Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +10 -0
- README.md +890 -0
- config.json +32 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,890 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: BAAI/bge-base-en-v1.5
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
library_name: sentence-transformers
|
6 |
+
license: apache-2.0
|
7 |
+
metrics:
|
8 |
+
- cosine_accuracy@1
|
9 |
+
- cosine_accuracy@3
|
10 |
+
- cosine_accuracy@5
|
11 |
+
- cosine_accuracy@10
|
12 |
+
- cosine_precision@1
|
13 |
+
- cosine_precision@3
|
14 |
+
- cosine_precision@5
|
15 |
+
- cosine_precision@10
|
16 |
+
- cosine_recall@1
|
17 |
+
- cosine_recall@3
|
18 |
+
- cosine_recall@5
|
19 |
+
- cosine_recall@10
|
20 |
+
- cosine_ndcg@10
|
21 |
+
- cosine_mrr@10
|
22 |
+
- cosine_map@100
|
23 |
+
pipeline_tag: sentence-similarity
|
24 |
+
tags:
|
25 |
+
- sentence-transformers
|
26 |
+
- sentence-similarity
|
27 |
+
- feature-extraction
|
28 |
+
- generated_from_trainer
|
29 |
+
- dataset_size:56355
|
30 |
+
- loss:MatryoshkaLoss
|
31 |
+
- loss:MultipleNegativesRankingLoss
|
32 |
+
widget:
|
33 |
+
- source_sentence: "\n Given the Column informations, generate an SQL query for\
|
34 |
+
\ the following question:\n Column: Finishing position | Points awarded (Platinum)\
|
35 |
+
\ | Points awarded (Gold) | Points awarded (Silver) | Points awarded (Satellite)\n\
|
36 |
+
\ Question: How many platinum points were awarded when 6 gold points were awarded?\n\
|
37 |
+
\ SQL Query: SELECT MAX Points awarded (Platinum) FROM table WHERE Points awarded\
|
38 |
+
\ (Gold) = 6\n "
|
39 |
+
sentences:
|
40 |
+
- How many platinum points were awarded when 6 gold points were awarded?
|
41 |
+
- Did any team score games that totaled up to 860.5?
|
42 |
+
- Who had the pole position at the German Grand Prix?
|
43 |
+
- source_sentence: "\n Given the Column informations, generate an SQL query for\
|
44 |
+
\ the following question:\n Column: Player | No. | Nationality | Position | Years\
|
45 |
+
\ in Toronto | School/Club Team\n Question: What's Dell Curry nationality?\n\
|
46 |
+
\ SQL Query: SELECT Nationality FROM table WHERE Player = Dell Curry\n "
|
47 |
+
sentences:
|
48 |
+
- What is the title when original air date is may15,2008?
|
49 |
+
- What's Dell Curry nationality?
|
50 |
+
- What's the minimum total attendance of the Premier League association football?
|
51 |
+
- source_sentence: "\n Given the Column informations, generate an SQL query for\
|
52 |
+
\ the following question:\n Column: Sepal length | Sepal width | Petal length\
|
53 |
+
\ | Petal width | Species\n Question: Name the species when petal width is 2.0\
|
54 |
+
\ and petal length is 4.9\n SQL Query: SELECT Species FROM table WHERE Petal\
|
55 |
+
\ width = 2.0 AND Petal length = 4.9\n "
|
56 |
+
sentences:
|
57 |
+
- What year was the championship in Wimbledon (2)?
|
58 |
+
- Who wrote Series 38?
|
59 |
+
- Name the species when petal width is 2.0 and petal length is 4.9
|
60 |
+
- source_sentence: "\n Given the Column informations, generate an SQL query for\
|
61 |
+
\ the following question:\n Column: No. in season | No. in series | Title | Directed\
|
62 |
+
\ by | Written by | Original air date | U.S. viewers (million)\n Question: How\
|
63 |
+
\ many millions of U.S. viewers watched the episode that first aired on March\
|
64 |
+
\ 31, 2013?\n SQL Query: SELECT U.S. viewers (million) FROM table WHERE Original\
|
65 |
+
\ air date = March 31, 2013\n "
|
66 |
+
sentences:
|
67 |
+
- How many millions of U.S. viewers watched the episode that first aired on March
|
68 |
+
31, 2013?
|
69 |
+
- How many viewers were there for the premier with 34
|
70 |
+
- What is Bruce Cerone overall?
|
71 |
+
- source_sentence: "\n Given the Column informations, generate an SQL query for\
|
72 |
+
\ the following question:\n Column: Nomination | Actors Name | Film Name | Director\
|
73 |
+
\ | Country\n Question: What was the film Falling up nominated for?\n SQL Query:\
|
74 |
+
\ SELECT Nomination FROM table WHERE Film Name = Falling Up\n "
|
75 |
+
sentences:
|
76 |
+
- What was the film Falling up nominated for?
|
77 |
+
- Who wrote an episode watched by 19.01 million US viewers?
|
78 |
+
- What player is on the Montreal Alouettes CFl team?
|
79 |
+
model-index:
|
80 |
+
- name: BGE base SQL Matryoshka
|
81 |
+
results:
|
82 |
+
- task:
|
83 |
+
type: information-retrieval
|
84 |
+
name: Information Retrieval
|
85 |
+
dataset:
|
86 |
+
name: dim 768
|
87 |
+
type: dim_768
|
88 |
+
metrics:
|
89 |
+
- type: cosine_accuracy@1
|
90 |
+
value: 0.4676281647562665
|
91 |
+
name: Cosine Accuracy@1
|
92 |
+
- type: cosine_accuracy@3
|
93 |
+
value: 0.4697065121551833
|
94 |
+
name: Cosine Accuracy@3
|
95 |
+
- type: cosine_accuracy@5
|
96 |
+
value: 0.4697065121551833
|
97 |
+
name: Cosine Accuracy@5
|
98 |
+
- type: cosine_accuracy@10
|
99 |
+
value: 0.4697065121551833
|
100 |
+
name: Cosine Accuracy@10
|
101 |
+
- type: cosine_precision@1
|
102 |
+
value: 0.4676281647562665
|
103 |
+
name: Cosine Precision@1
|
104 |
+
- type: cosine_precision@3
|
105 |
+
value: 0.15656883738506108
|
106 |
+
name: Cosine Precision@3
|
107 |
+
- type: cosine_precision@5
|
108 |
+
value: 0.09394130243103667
|
109 |
+
name: Cosine Precision@5
|
110 |
+
- type: cosine_precision@10
|
111 |
+
value: 0.046970651215518334
|
112 |
+
name: Cosine Precision@10
|
113 |
+
- type: cosine_recall@1
|
114 |
+
value: 0.4676281647562665
|
115 |
+
name: Cosine Recall@1
|
116 |
+
- type: cosine_recall@3
|
117 |
+
value: 0.4697065121551833
|
118 |
+
name: Cosine Recall@3
|
119 |
+
- type: cosine_recall@5
|
120 |
+
value: 0.4697065121551833
|
121 |
+
name: Cosine Recall@5
|
122 |
+
- type: cosine_recall@10
|
123 |
+
value: 0.4697065121551833
|
124 |
+
name: Cosine Recall@10
|
125 |
+
- type: cosine_ndcg@10
|
126 |
+
value: 0.46889822604232273
|
127 |
+
name: Cosine Ndcg@10
|
128 |
+
- type: cosine_mrr@10
|
129 |
+
value: 0.4686148549355503
|
130 |
+
name: Cosine Mrr@10
|
131 |
+
- type: cosine_map@100
|
132 |
+
value: 0.4686406337350657
|
133 |
+
name: Cosine Map@100
|
134 |
+
- task:
|
135 |
+
type: information-retrieval
|
136 |
+
name: Information Retrieval
|
137 |
+
dataset:
|
138 |
+
name: dim 512
|
139 |
+
type: dim_512
|
140 |
+
metrics:
|
141 |
+
- type: cosine_accuracy@1
|
142 |
+
value: 0.46775412520468573
|
143 |
+
name: Cosine Accuracy@1
|
144 |
+
- type: cosine_accuracy@3
|
145 |
+
value: 0.4697065121551833
|
146 |
+
name: Cosine Accuracy@3
|
147 |
+
- type: cosine_accuracy@5
|
148 |
+
value: 0.4697065121551833
|
149 |
+
name: Cosine Accuracy@5
|
150 |
+
- type: cosine_accuracy@10
|
151 |
+
value: 0.4697065121551833
|
152 |
+
name: Cosine Accuracy@10
|
153 |
+
- type: cosine_precision@1
|
154 |
+
value: 0.46775412520468573
|
155 |
+
name: Cosine Precision@1
|
156 |
+
- type: cosine_precision@3
|
157 |
+
value: 0.15656883738506108
|
158 |
+
name: Cosine Precision@3
|
159 |
+
- type: cosine_precision@5
|
160 |
+
value: 0.09394130243103667
|
161 |
+
name: Cosine Precision@5
|
162 |
+
- type: cosine_precision@10
|
163 |
+
value: 0.046970651215518334
|
164 |
+
name: Cosine Precision@10
|
165 |
+
- type: cosine_recall@1
|
166 |
+
value: 0.46775412520468573
|
167 |
+
name: Cosine Recall@1
|
168 |
+
- type: cosine_recall@3
|
169 |
+
value: 0.4697065121551833
|
170 |
+
name: Cosine Recall@3
|
171 |
+
- type: cosine_recall@5
|
172 |
+
value: 0.4697065121551833
|
173 |
+
name: Cosine Recall@5
|
174 |
+
- type: cosine_recall@10
|
175 |
+
value: 0.4697065121551833
|
176 |
+
name: Cosine Recall@10
|
177 |
+
- type: cosine_ndcg@10
|
178 |
+
value: 0.4689612062665323
|
179 |
+
name: Cosine Ndcg@10
|
180 |
+
- type: cosine_mrr@10
|
181 |
+
value: 0.46869882856782963
|
182 |
+
name: Cosine Mrr@10
|
183 |
+
- type: cosine_map@100
|
184 |
+
value: 0.4687237988187482
|
185 |
+
name: Cosine Map@100
|
186 |
+
- task:
|
187 |
+
type: information-retrieval
|
188 |
+
name: Information Retrieval
|
189 |
+
dataset:
|
190 |
+
name: dim 256
|
191 |
+
type: dim_256
|
192 |
+
metrics:
|
193 |
+
- type: cosine_accuracy@1
|
194 |
+
value: 0.46750220430784734
|
195 |
+
name: Cosine Accuracy@1
|
196 |
+
- type: cosine_accuracy@3
|
197 |
+
value: 0.4697065121551833
|
198 |
+
name: Cosine Accuracy@3
|
199 |
+
- type: cosine_accuracy@5
|
200 |
+
value: 0.4697065121551833
|
201 |
+
name: Cosine Accuracy@5
|
202 |
+
- type: cosine_accuracy@10
|
203 |
+
value: 0.46976949237939286
|
204 |
+
name: Cosine Accuracy@10
|
205 |
+
- type: cosine_precision@1
|
206 |
+
value: 0.46750220430784734
|
207 |
+
name: Cosine Precision@1
|
208 |
+
- type: cosine_precision@3
|
209 |
+
value: 0.15656883738506108
|
210 |
+
name: Cosine Precision@3
|
211 |
+
- type: cosine_precision@5
|
212 |
+
value: 0.09394130243103667
|
213 |
+
name: Cosine Precision@5
|
214 |
+
- type: cosine_precision@10
|
215 |
+
value: 0.04697694923793929
|
216 |
+
name: Cosine Precision@10
|
217 |
+
- type: cosine_recall@1
|
218 |
+
value: 0.46750220430784734
|
219 |
+
name: Cosine Recall@1
|
220 |
+
- type: cosine_recall@3
|
221 |
+
value: 0.4697065121551833
|
222 |
+
name: Cosine Recall@3
|
223 |
+
- type: cosine_recall@5
|
224 |
+
value: 0.4697065121551833
|
225 |
+
name: Cosine Recall@5
|
226 |
+
- type: cosine_recall@10
|
227 |
+
value: 0.46976949237939286
|
228 |
+
name: Cosine Recall@10
|
229 |
+
- type: cosine_ndcg@10
|
230 |
+
value: 0.4688906637675648
|
231 |
+
name: Cosine Ndcg@10
|
232 |
+
- type: cosine_mrr@10
|
233 |
+
value: 0.4685833648234455
|
234 |
+
name: Cosine Mrr@10
|
235 |
+
- type: cosine_map@100
|
236 |
+
value: 0.468602927990512
|
237 |
+
name: Cosine Map@100
|
238 |
+
- task:
|
239 |
+
type: information-retrieval
|
240 |
+
name: Information Retrieval
|
241 |
+
dataset:
|
242 |
+
name: dim 128
|
243 |
+
type: dim_128
|
244 |
+
metrics:
|
245 |
+
- type: cosine_accuracy@1
|
246 |
+
value: 0.46769114498047615
|
247 |
+
name: Cosine Accuracy@1
|
248 |
+
- type: cosine_accuracy@3
|
249 |
+
value: 0.4696435319309737
|
250 |
+
name: Cosine Accuracy@3
|
251 |
+
- type: cosine_accuracy@5
|
252 |
+
value: 0.46976949237939286
|
253 |
+
name: Cosine Accuracy@5
|
254 |
+
- type: cosine_accuracy@10
|
255 |
+
value: 0.46976949237939286
|
256 |
+
name: Cosine Accuracy@10
|
257 |
+
- type: cosine_precision@1
|
258 |
+
value: 0.46769114498047615
|
259 |
+
name: Cosine Precision@1
|
260 |
+
- type: cosine_precision@3
|
261 |
+
value: 0.1565478439769912
|
262 |
+
name: Cosine Precision@3
|
263 |
+
- type: cosine_precision@5
|
264 |
+
value: 0.09395389847587858
|
265 |
+
name: Cosine Precision@5
|
266 |
+
- type: cosine_precision@10
|
267 |
+
value: 0.04697694923793929
|
268 |
+
name: Cosine Precision@10
|
269 |
+
- type: cosine_recall@1
|
270 |
+
value: 0.46769114498047615
|
271 |
+
name: Cosine Recall@1
|
272 |
+
- type: cosine_recall@3
|
273 |
+
value: 0.4696435319309737
|
274 |
+
name: Cosine Recall@3
|
275 |
+
- type: cosine_recall@5
|
276 |
+
value: 0.46976949237939286
|
277 |
+
name: Cosine Recall@5
|
278 |
+
- type: cosine_recall@10
|
279 |
+
value: 0.46976949237939286
|
280 |
+
name: Cosine Recall@10
|
281 |
+
- type: cosine_ndcg@10
|
282 |
+
value: 0.4689469541953942
|
283 |
+
name: Cosine Ndcg@10
|
284 |
+
- type: cosine_mrr@10
|
285 |
+
value: 0.468661040433304
|
286 |
+
name: Cosine Mrr@10
|
287 |
+
- type: cosine_map@100
|
288 |
+
value: 0.4686773555936371
|
289 |
+
name: Cosine Map@100
|
290 |
+
- task:
|
291 |
+
type: information-retrieval
|
292 |
+
name: Information Retrieval
|
293 |
+
dataset:
|
294 |
+
name: dim 64
|
295 |
+
type: dim_64
|
296 |
+
metrics:
|
297 |
+
- type: cosine_accuracy@1
|
298 |
+
value: 0.46775412520468573
|
299 |
+
name: Cosine Accuracy@1
|
300 |
+
- type: cosine_accuracy@3
|
301 |
+
value: 0.4696435319309737
|
302 |
+
name: Cosine Accuracy@3
|
303 |
+
- type: cosine_accuracy@5
|
304 |
+
value: 0.4696435319309737
|
305 |
+
name: Cosine Accuracy@5
|
306 |
+
- type: cosine_accuracy@10
|
307 |
+
value: 0.4697065121551833
|
308 |
+
name: Cosine Accuracy@10
|
309 |
+
- type: cosine_precision@1
|
310 |
+
value: 0.46775412520468573
|
311 |
+
name: Cosine Precision@1
|
312 |
+
- type: cosine_precision@3
|
313 |
+
value: 0.1565478439769912
|
314 |
+
name: Cosine Precision@3
|
315 |
+
- type: cosine_precision@5
|
316 |
+
value: 0.09392870638619474
|
317 |
+
name: Cosine Precision@5
|
318 |
+
- type: cosine_precision@10
|
319 |
+
value: 0.046970651215518334
|
320 |
+
name: Cosine Precision@10
|
321 |
+
- type: cosine_recall@1
|
322 |
+
value: 0.46775412520468573
|
323 |
+
name: Cosine Recall@1
|
324 |
+
- type: cosine_recall@3
|
325 |
+
value: 0.4696435319309737
|
326 |
+
name: Cosine Recall@3
|
327 |
+
- type: cosine_recall@5
|
328 |
+
value: 0.4696435319309737
|
329 |
+
name: Cosine Recall@5
|
330 |
+
- type: cosine_recall@10
|
331 |
+
value: 0.4697065121551833
|
332 |
+
name: Cosine Recall@10
|
333 |
+
- type: cosine_ndcg@10
|
334 |
+
value: 0.4689578301883334
|
335 |
+
name: Cosine Ndcg@10
|
336 |
+
- type: cosine_mrr@10
|
337 |
+
value: 0.468696204391821
|
338 |
+
name: Cosine Mrr@10
|
339 |
+
- type: cosine_map@100
|
340 |
+
value: 0.46870770760703784
|
341 |
+
name: Cosine Map@100
|
342 |
+
---
|
343 |
+
|
344 |
+
# BGE base SQL Matryoshka
|
345 |
+
|
346 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
347 |
+
|
348 |
+
## Model Details
|
349 |
+
|
350 |
+
### Model Description
|
351 |
+
- **Model Type:** Sentence Transformer
|
352 |
+
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
|
353 |
+
- **Maximum Sequence Length:** 512 tokens
|
354 |
+
- **Output Dimensionality:** 768 dimensions
|
355 |
+
- **Similarity Function:** Cosine Similarity
|
356 |
+
- **Training Dataset:**
|
357 |
+
- json
|
358 |
+
- **Language:** en
|
359 |
+
- **License:** apache-2.0
|
360 |
+
|
361 |
+
### Model Sources
|
362 |
+
|
363 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
364 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
365 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
366 |
+
|
367 |
+
### Full Model Architecture
|
368 |
+
|
369 |
+
```
|
370 |
+
SentenceTransformer(
|
371 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
|
372 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
373 |
+
(2): Normalize()
|
374 |
+
)
|
375 |
+
```
|
376 |
+
|
377 |
+
## Usage
|
378 |
+
|
379 |
+
### Direct Usage (Sentence Transformers)
|
380 |
+
|
381 |
+
First install the Sentence Transformers library:
|
382 |
+
|
383 |
+
```bash
|
384 |
+
pip install -U sentence-transformers
|
385 |
+
```
|
386 |
+
|
387 |
+
Then you can load this model and run inference.
|
388 |
+
```python
|
389 |
+
from sentence_transformers import SentenceTransformer
|
390 |
+
|
391 |
+
# Download from the 🤗 Hub
|
392 |
+
model = SentenceTransformer("dat-ai/bge-base-for_text2sql")
|
393 |
+
# Run inference
|
394 |
+
sentences = [
|
395 |
+
'\n Given the Column informations, generate an SQL query for the following question:\n Column: Nomination | Actors Name | Film Name | Director | Country\n Question: What was the film Falling up nominated for?\n SQL Query: SELECT Nomination FROM table WHERE Film Name = Falling Up\n ',
|
396 |
+
'What was the film Falling up nominated for?',
|
397 |
+
'Who wrote an episode watched by 19.01 million US viewers?',
|
398 |
+
]
|
399 |
+
embeddings = model.encode(sentences)
|
400 |
+
print(embeddings.shape)
|
401 |
+
# [3, 768]
|
402 |
+
|
403 |
+
# Get the similarity scores for the embeddings
|
404 |
+
similarities = model.similarity(embeddings, embeddings)
|
405 |
+
print(similarities.shape)
|
406 |
+
# [3, 3]
|
407 |
+
```
|
408 |
+
|
409 |
+
<!--
|
410 |
+
### Direct Usage (Transformers)
|
411 |
+
|
412 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
413 |
+
|
414 |
+
</details>
|
415 |
+
-->
|
416 |
+
|
417 |
+
<!--
|
418 |
+
### Downstream Usage (Sentence Transformers)
|
419 |
+
|
420 |
+
You can finetune this model on your own dataset.
|
421 |
+
|
422 |
+
<details><summary>Click to expand</summary>
|
423 |
+
|
424 |
+
</details>
|
425 |
+
-->
|
426 |
+
|
427 |
+
<!--
|
428 |
+
### Out-of-Scope Use
|
429 |
+
|
430 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
431 |
+
-->
|
432 |
+
|
433 |
+
## Evaluation
|
434 |
+
|
435 |
+
### Metrics
|
436 |
+
|
437 |
+
#### Information Retrieval
|
438 |
+
|
439 |
+
* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
|
440 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
441 |
+
|
442 |
+
| Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
|
443 |
+
|:--------------------|:-----------|:----------|:-----------|:-----------|:----------|
|
444 |
+
| cosine_accuracy@1 | 0.4676 | 0.4678 | 0.4675 | 0.4677 | 0.4678 |
|
445 |
+
| cosine_accuracy@3 | 0.4697 | 0.4697 | 0.4697 | 0.4696 | 0.4696 |
|
446 |
+
| cosine_accuracy@5 | 0.4697 | 0.4697 | 0.4697 | 0.4698 | 0.4696 |
|
447 |
+
| cosine_accuracy@10 | 0.4697 | 0.4697 | 0.4698 | 0.4698 | 0.4697 |
|
448 |
+
| cosine_precision@1 | 0.4676 | 0.4678 | 0.4675 | 0.4677 | 0.4678 |
|
449 |
+
| cosine_precision@3 | 0.1566 | 0.1566 | 0.1566 | 0.1565 | 0.1565 |
|
450 |
+
| cosine_precision@5 | 0.0939 | 0.0939 | 0.0939 | 0.094 | 0.0939 |
|
451 |
+
| cosine_precision@10 | 0.047 | 0.047 | 0.047 | 0.047 | 0.047 |
|
452 |
+
| cosine_recall@1 | 0.4676 | 0.4678 | 0.4675 | 0.4677 | 0.4678 |
|
453 |
+
| cosine_recall@3 | 0.4697 | 0.4697 | 0.4697 | 0.4696 | 0.4696 |
|
454 |
+
| cosine_recall@5 | 0.4697 | 0.4697 | 0.4697 | 0.4698 | 0.4696 |
|
455 |
+
| cosine_recall@10 | 0.4697 | 0.4697 | 0.4698 | 0.4698 | 0.4697 |
|
456 |
+
| **cosine_ndcg@10** | **0.4689** | **0.469** | **0.4689** | **0.4689** | **0.469** |
|
457 |
+
| cosine_mrr@10 | 0.4686 | 0.4687 | 0.4686 | 0.4687 | 0.4687 |
|
458 |
+
| cosine_map@100 | 0.4686 | 0.4687 | 0.4686 | 0.4687 | 0.4687 |
|
459 |
+
|
460 |
+
<!--
|
461 |
+
## Bias, Risks and Limitations
|
462 |
+
|
463 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
464 |
+
-->
|
465 |
+
|
466 |
+
<!--
|
467 |
+
### Recommendations
|
468 |
+
|
469 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
470 |
+
-->
|
471 |
+
|
472 |
+
## Training Details
|
473 |
+
|
474 |
+
### Training Dataset
|
475 |
+
|
476 |
+
#### json
|
477 |
+
|
478 |
+
* Dataset: json
|
479 |
+
* Size: 56,355 training samples
|
480 |
+
* Columns: <code>context</code> and <code>question</code>
|
481 |
+
* Approximate statistics based on the first 1000 samples:
|
482 |
+
| | context | question |
|
483 |
+
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
484 |
+
| type | string | string |
|
485 |
+
| details | <ul><li>min: 45 tokens</li><li>mean: 72.61 tokens</li><li>max: 196 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 15.41 tokens</li><li>max: 36 tokens</li></ul> |
|
486 |
+
* Samples:
|
487 |
+
| context | question |
|
488 |
+
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
489 |
+
| <code><br> Given the Column informations, generate an SQL query for the following question:<br> Column: State/territory | Text/background colour | Format | Current slogan | Current series | Notes<br> Question: Tell me what the notes are for South Australia <br> SQL Query: SELECT Notes FROM table WHERE Current slogan = SOUTH AUSTRALIA<br> </code> | <code>Tell me what the notes are for South Australia </code> |
|
490 |
+
| <code><br> Given the Column informations, generate an SQL query for the following question:<br> Column: State/territory | Text/background colour | Format | Current slogan | Current series | Notes<br> Question: What is the current series where the new series began in June 2011?<br> SQL Query: SELECT Current series FROM table WHERE Notes = New series began in June 2011<br> </code> | <code>What is the current series where the new series began in June 2011?</code> |
|
491 |
+
| <code><br> Given the Column informations, generate an SQL query for the following question:<br> Column: State/territory | Text/background colour | Format | Current slogan | Current series | Notes<br> Question: What is the format for South Australia?<br> SQL Query: SELECT Format FROM table WHERE State/territory = South Australia<br> </code> | <code>What is the format for South Australia?</code> |
|
492 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
493 |
+
```json
|
494 |
+
{
|
495 |
+
"loss": "MultipleNegativesRankingLoss",
|
496 |
+
"matryoshka_dims": [
|
497 |
+
768,
|
498 |
+
512
|
499 |
+
],
|
500 |
+
"matryoshka_weights": [
|
501 |
+
1,
|
502 |
+
1
|
503 |
+
],
|
504 |
+
"n_dims_per_step": -1
|
505 |
+
}
|
506 |
+
```
|
507 |
+
|
508 |
+
### Training Hyperparameters
|
509 |
+
#### Non-Default Hyperparameters
|
510 |
+
|
511 |
+
- `eval_strategy`: epoch
|
512 |
+
- `per_device_train_batch_size`: 16
|
513 |
+
- `gradient_accumulation_steps`: 8
|
514 |
+
- `learning_rate`: 2e-05
|
515 |
+
- `num_train_epochs`: 4
|
516 |
+
- `lr_scheduler_type`: cosine
|
517 |
+
- `warmup_ratio`: 0.1
|
518 |
+
- `fp16`: True
|
519 |
+
- `load_best_model_at_end`: True
|
520 |
+
- `optim`: adamw_torch_fused
|
521 |
+
- `batch_sampler`: no_duplicates
|
522 |
+
|
523 |
+
#### All Hyperparameters
|
524 |
+
<details><summary>Click to expand</summary>
|
525 |
+
|
526 |
+
- `overwrite_output_dir`: False
|
527 |
+
- `do_predict`: False
|
528 |
+
- `eval_strategy`: epoch
|
529 |
+
- `prediction_loss_only`: True
|
530 |
+
- `per_device_train_batch_size`: 16
|
531 |
+
- `per_device_eval_batch_size`: 8
|
532 |
+
- `per_gpu_train_batch_size`: None
|
533 |
+
- `per_gpu_eval_batch_size`: None
|
534 |
+
- `gradient_accumulation_steps`: 8
|
535 |
+
- `eval_accumulation_steps`: None
|
536 |
+
- `learning_rate`: 2e-05
|
537 |
+
- `weight_decay`: 0.0
|
538 |
+
- `adam_beta1`: 0.9
|
539 |
+
- `adam_beta2`: 0.999
|
540 |
+
- `adam_epsilon`: 1e-08
|
541 |
+
- `max_grad_norm`: 1.0
|
542 |
+
- `num_train_epochs`: 4
|
543 |
+
- `max_steps`: -1
|
544 |
+
- `lr_scheduler_type`: cosine
|
545 |
+
- `lr_scheduler_kwargs`: {}
|
546 |
+
- `warmup_ratio`: 0.1
|
547 |
+
- `warmup_steps`: 0
|
548 |
+
- `log_level`: passive
|
549 |
+
- `log_level_replica`: warning
|
550 |
+
- `log_on_each_node`: True
|
551 |
+
- `logging_nan_inf_filter`: True
|
552 |
+
- `save_safetensors`: True
|
553 |
+
- `save_on_each_node`: False
|
554 |
+
- `save_only_model`: False
|
555 |
+
- `restore_callback_states_from_checkpoint`: False
|
556 |
+
- `no_cuda`: False
|
557 |
+
- `use_cpu`: False
|
558 |
+
- `use_mps_device`: False
|
559 |
+
- `seed`: 42
|
560 |
+
- `data_seed`: None
|
561 |
+
- `jit_mode_eval`: False
|
562 |
+
- `use_ipex`: False
|
563 |
+
- `bf16`: False
|
564 |
+
- `fp16`: True
|
565 |
+
- `fp16_opt_level`: O1
|
566 |
+
- `half_precision_backend`: auto
|
567 |
+
- `bf16_full_eval`: False
|
568 |
+
- `fp16_full_eval`: False
|
569 |
+
- `tf32`: None
|
570 |
+
- `local_rank`: 0
|
571 |
+
- `ddp_backend`: None
|
572 |
+
- `tpu_num_cores`: None
|
573 |
+
- `tpu_metrics_debug`: False
|
574 |
+
- `debug`: []
|
575 |
+
- `dataloader_drop_last`: False
|
576 |
+
- `dataloader_num_workers`: 0
|
577 |
+
- `dataloader_prefetch_factor`: None
|
578 |
+
- `past_index`: -1
|
579 |
+
- `disable_tqdm`: False
|
580 |
+
- `remove_unused_columns`: True
|
581 |
+
- `label_names`: None
|
582 |
+
- `load_best_model_at_end`: True
|
583 |
+
- `ignore_data_skip`: False
|
584 |
+
- `fsdp`: []
|
585 |
+
- `fsdp_min_num_params`: 0
|
586 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
587 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
588 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
589 |
+
- `deepspeed`: None
|
590 |
+
- `label_smoothing_factor`: 0.0
|
591 |
+
- `optim`: adamw_torch_fused
|
592 |
+
- `optim_args`: None
|
593 |
+
- `adafactor`: False
|
594 |
+
- `group_by_length`: False
|
595 |
+
- `length_column_name`: length
|
596 |
+
- `ddp_find_unused_parameters`: None
|
597 |
+
- `ddp_bucket_cap_mb`: None
|
598 |
+
- `ddp_broadcast_buffers`: False
|
599 |
+
- `dataloader_pin_memory`: True
|
600 |
+
- `dataloader_persistent_workers`: False
|
601 |
+
- `skip_memory_metrics`: True
|
602 |
+
- `use_legacy_prediction_loop`: False
|
603 |
+
- `push_to_hub`: False
|
604 |
+
- `resume_from_checkpoint`: None
|
605 |
+
- `hub_model_id`: None
|
606 |
+
- `hub_strategy`: every_save
|
607 |
+
- `hub_private_repo`: False
|
608 |
+
- `hub_always_push`: False
|
609 |
+
- `gradient_checkpointing`: False
|
610 |
+
- `gradient_checkpointing_kwargs`: None
|
611 |
+
- `include_inputs_for_metrics`: False
|
612 |
+
- `eval_do_concat_batches`: True
|
613 |
+
- `fp16_backend`: auto
|
614 |
+
- `push_to_hub_model_id`: None
|
615 |
+
- `push_to_hub_organization`: None
|
616 |
+
- `mp_parameters`:
|
617 |
+
- `auto_find_batch_size`: False
|
618 |
+
- `full_determinism`: False
|
619 |
+
- `torchdynamo`: None
|
620 |
+
- `ray_scope`: last
|
621 |
+
- `ddp_timeout`: 1800
|
622 |
+
- `torch_compile`: False
|
623 |
+
- `torch_compile_backend`: None
|
624 |
+
- `torch_compile_mode`: None
|
625 |
+
- `dispatch_batches`: None
|
626 |
+
- `split_batches`: None
|
627 |
+
- `include_tokens_per_second`: False
|
628 |
+
- `include_num_input_tokens_seen`: False
|
629 |
+
- `neftune_noise_alpha`: None
|
630 |
+
- `optim_target_modules`: None
|
631 |
+
- `batch_eval_metrics`: False
|
632 |
+
- `prompts`: None
|
633 |
+
- `batch_sampler`: no_duplicates
|
634 |
+
- `multi_dataset_batch_sampler`: proportional
|
635 |
+
|
636 |
+
</details>
|
637 |
+
|
638 |
+
### Training Logs
|
639 |
+
<details><summary>Click to expand</summary>
|
640 |
+
|
641 |
+
| Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|
642 |
+
|:----------:|:--------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
|
643 |
+
| 0.0227 | 10 | 1.773 | - | - | - | - | - |
|
644 |
+
| 0.0454 | 20 | 1.3231 | - | - | - | - | - |
|
645 |
+
| 0.0681 | 30 | 0.713 | - | - | - | - | - |
|
646 |
+
| 0.0908 | 40 | 0.286 | - | - | - | - | - |
|
647 |
+
| 0.1135 | 50 | 0.1013 | - | - | - | - | - |
|
648 |
+
| 0.1362 | 60 | 0.0635 | - | - | - | - | - |
|
649 |
+
| 0.1590 | 70 | 0.0453 | - | - | - | - | - |
|
650 |
+
| 0.1817 | 80 | 0.041 | - | - | - | - | - |
|
651 |
+
| 0.2044 | 90 | 0.039 | - | - | - | - | - |
|
652 |
+
| 0.2271 | 100 | 0.027 | - | - | - | - | - |
|
653 |
+
| 0.2498 | 110 | 0.0193 | - | - | - | - | - |
|
654 |
+
| 0.2725 | 120 | 0.0167 | - | - | - | - | - |
|
655 |
+
| 0.2952 | 130 | 0.016 | - | - | - | - | - |
|
656 |
+
| 0.3179 | 140 | 0.0197 | - | - | - | - | - |
|
657 |
+
| 0.3406 | 150 | 0.0217 | - | - | - | - | - |
|
658 |
+
| 0.3633 | 160 | 0.0162 | - | - | - | - | - |
|
659 |
+
| 0.3860 | 170 | 0.012 | - | - | - | - | - |
|
660 |
+
| 0.4087 | 180 | 0.013 | - | - | - | - | - |
|
661 |
+
| 0.4315 | 190 | 0.0255 | - | - | - | - | - |
|
662 |
+
| 0.4542 | 200 | 0.0229 | - | - | - | - | - |
|
663 |
+
| 0.4769 | 210 | 0.0181 | - | - | - | - | - |
|
664 |
+
| 0.4996 | 220 | 0.0195 | - | - | - | - | - |
|
665 |
+
| 0.5223 | 230 | 0.0199 | - | - | - | - | - |
|
666 |
+
| 0.5450 | 240 | 0.0144 | - | - | - | - | - |
|
667 |
+
| 0.5677 | 250 | 0.0102 | - | - | - | - | - |
|
668 |
+
| 0.5904 | 260 | 0.0101 | - | - | - | - | - |
|
669 |
+
| 0.6131 | 270 | 0.0095 | - | - | - | - | - |
|
670 |
+
| 0.6358 | 280 | 0.0173 | - | - | - | - | - |
|
671 |
+
| 0.6585 | 290 | 0.01 | - | - | - | - | - |
|
672 |
+
| 0.6812 | 300 | 0.0129 | - | - | - | - | - |
|
673 |
+
| 0.7039 | 310 | 0.0177 | - | - | - | - | - |
|
674 |
+
| 0.7267 | 320 | 0.0106 | - | - | - | - | - |
|
675 |
+
| 0.7494 | 330 | 0.0146 | - | - | - | - | - |
|
676 |
+
| 0.7721 | 340 | 0.0185 | - | - | - | - | - |
|
677 |
+
| 0.7948 | 350 | 0.0203 | - | - | - | - | - |
|
678 |
+
| 0.8175 | 360 | 0.0146 | - | - | - | - | - |
|
679 |
+
| 0.8402 | 370 | 0.0072 | - | - | - | - | - |
|
680 |
+
| 0.8629 | 380 | 0.0102 | - | - | - | - | - |
|
681 |
+
| 0.8856 | 390 | 0.0075 | - | - | - | - | - |
|
682 |
+
| 0.9083 | 400 | 0.0064 | - | - | - | - | - |
|
683 |
+
| 0.9310 | 410 | 0.0163 | - | - | - | - | - |
|
684 |
+
| 0.9537 | 420 | 0.0069 | - | - | - | - | - |
|
685 |
+
| 0.9764 | 430 | 0.0072 | - | - | - | - | - |
|
686 |
+
| 0.9991 | 440 | 0.0147 | 0.4688 | 0.4689 | 0.4688 | 0.4689 | 0.4689 |
|
687 |
+
| 1.0219 | 450 | 0.0151 | - | - | - | - | - |
|
688 |
+
| 1.0446 | 460 | 0.0135 | - | - | - | - | - |
|
689 |
+
| 1.0673 | 470 | 0.0189 | - | - | - | - | - |
|
690 |
+
| 1.0900 | 480 | 0.0121 | - | - | - | - | - |
|
691 |
+
| 1.1127 | 490 | 0.0064 | - | - | - | - | - |
|
692 |
+
| 1.1354 | 500 | 0.0111 | - | - | - | - | - |
|
693 |
+
| 1.1581 | 510 | 0.0103 | - | - | - | - | - |
|
694 |
+
| 1.1808 | 520 | 0.0144 | - | - | - | - | - |
|
695 |
+
| 1.2035 | 530 | 0.0151 | - | - | - | - | - |
|
696 |
+
| 1.2262 | 540 | 0.0062 | - | - | - | - | - |
|
697 |
+
| 1.2489 | 550 | 0.0104 | - | - | - | - | - |
|
698 |
+
| 1.2716 | 560 | 0.0046 | - | - | - | - | - |
|
699 |
+
| 1.2944 | 570 | 0.0056 | - | - | - | - | - |
|
700 |
+
| 1.3171 | 580 | 0.0073 | - | - | - | - | - |
|
701 |
+
| 1.3398 | 590 | 0.007 | - | - | - | - | - |
|
702 |
+
| 1.3625 | 600 | 0.0074 | - | - | - | - | - |
|
703 |
+
| 1.3852 | 610 | 0.0057 | - | - | - | - | - |
|
704 |
+
| 1.4079 | 620 | 0.0052 | - | - | - | - | - |
|
705 |
+
| 1.4306 | 630 | 0.0114 | - | - | - | - | - |
|
706 |
+
| 1.4533 | 640 | 0.0075 | - | - | - | - | - |
|
707 |
+
| 1.4760 | 650 | 0.0116 | - | - | - | - | - |
|
708 |
+
| 1.4987 | 660 | 0.0092 | - | - | - | - | - |
|
709 |
+
| 1.5214 | 670 | 0.0137 | - | - | - | - | - |
|
710 |
+
| 1.5441 | 680 | 0.0066 | - | - | - | - | - |
|
711 |
+
| 1.5668 | 690 | 0.0042 | - | - | - | - | - |
|
712 |
+
| 1.5896 | 700 | 0.0036 | - | - | - | - | - |
|
713 |
+
| 1.6123 | 710 | 0.0039 | - | - | - | - | - |
|
714 |
+
| 1.6350 | 720 | 0.0065 | - | - | - | - | - |
|
715 |
+
| 1.6577 | 730 | 0.0051 | - | - | - | - | - |
|
716 |
+
| 1.6804 | 740 | 0.0054 | - | - | - | - | - |
|
717 |
+
| 1.7031 | 750 | 0.0086 | - | - | - | - | - |
|
718 |
+
| 1.7258 | 760 | 0.0062 | - | - | - | - | - |
|
719 |
+
| 1.7485 | 770 | 0.0071 | - | - | - | - | - |
|
720 |
+
| 1.7712 | 780 | 0.0108 | - | - | - | - | - |
|
721 |
+
| 1.7939 | 790 | 0.009 | - | - | - | - | - |
|
722 |
+
| 1.8166 | 800 | 0.0075 | - | - | - | - | - |
|
723 |
+
| 1.8393 | 810 | 0.0039 | - | - | - | - | - |
|
724 |
+
| 1.8620 | 820 | 0.0047 | - | - | - | - | - |
|
725 |
+
| 1.8848 | 830 | 0.0037 | - | - | - | - | - |
|
726 |
+
| 1.9075 | 840 | 0.0037 | - | - | - | - | - |
|
727 |
+
| 1.9302 | 850 | 0.0064 | - | - | - | - | - |
|
728 |
+
| 1.9529 | 860 | 0.0047 | - | - | - | - | - |
|
729 |
+
| 1.9756 | 870 | 0.0034 | - | - | - | - | - |
|
730 |
+
| 1.9983 | 880 | 0.0061 | 0.4689 | 0.4689 | 0.4689 | 0.4690 | 0.4690 |
|
731 |
+
| 2.0210 | 890 | 0.0096 | - | - | - | - | - |
|
732 |
+
| 2.0437 | 900 | 0.0071 | - | - | - | - | - |
|
733 |
+
| 2.0664 | 910 | 0.0101 | - | - | - | - | - |
|
734 |
+
| 2.0891 | 920 | 0.0054 | - | - | - | - | - |
|
735 |
+
| 2.1118 | 930 | 0.0039 | - | - | - | - | - |
|
736 |
+
| 2.1345 | 940 | 0.0074 | - | - | - | - | - |
|
737 |
+
| 2.1573 | 950 | 0.0044 | - | - | - | - | - |
|
738 |
+
| 2.1800 | 960 | 0.0088 | - | - | - | - | - |
|
739 |
+
| 2.2027 | 970 | 0.0096 | - | - | - | - | - |
|
740 |
+
| 2.2254 | 980 | 0.0057 | - | - | - | - | - |
|
741 |
+
| 2.2481 | 990 | 0.0063 | - | - | - | - | - |
|
742 |
+
| 2.2708 | 1000 | 0.0026 | - | - | - | - | - |
|
743 |
+
| 2.2935 | 1010 | 0.0032 | - | - | - | - | - |
|
744 |
+
| 2.3162 | 1020 | 0.0027 | - | - | - | - | - |
|
745 |
+
| 2.3389 | 1030 | 0.0041 | - | - | - | - | - |
|
746 |
+
| 2.3616 | 1040 | 0.0052 | - | - | - | - | - |
|
747 |
+
| 2.3843 | 1050 | 0.0035 | - | - | - | - | - |
|
748 |
+
| 2.4070 | 1060 | 0.0025 | - | - | - | - | - |
|
749 |
+
| 2.4297 | 1070 | 0.0059 | - | - | - | - | - |
|
750 |
+
| 2.4525 | 1080 | 0.0048 | - | - | - | - | - |
|
751 |
+
| 2.4752 | 1090 | 0.0064 | - | - | - | - | - |
|
752 |
+
| 2.4979 | 1100 | 0.0066 | - | - | - | - | - |
|
753 |
+
| 2.5206 | 1110 | 0.0078 | - | - | - | - | - |
|
754 |
+
| 2.5433 | 1120 | 0.0057 | - | - | - | - | - |
|
755 |
+
| 2.5660 | 1130 | 0.0026 | - | - | - | - | - |
|
756 |
+
| 2.5887 | 1140 | 0.0021 | - | - | - | - | - |
|
757 |
+
| 2.6114 | 1150 | 0.0021 | - | - | - | - | - |
|
758 |
+
| 2.6341 | 1160 | 0.0047 | - | - | - | - | - |
|
759 |
+
| 2.6568 | 1170 | 0.0034 | - | - | - | - | - |
|
760 |
+
| 2.6795 | 1180 | 0.0044 | - | - | - | - | - |
|
761 |
+
| 2.7022 | 1190 | 0.0058 | - | - | - | - | - |
|
762 |
+
| 2.7250 | 1200 | 0.0043 | - | - | - | - | - |
|
763 |
+
| 2.7477 | 1210 | 0.0056 | - | - | - | - | - |
|
764 |
+
| 2.7704 | 1220 | 0.0076 | - | - | - | - | - |
|
765 |
+
| 2.7931 | 1230 | 0.0063 | - | - | - | - | - |
|
766 |
+
| 2.8158 | 1240 | 0.0033 | - | - | - | - | - |
|
767 |
+
| 2.8385 | 1250 | 0.0025 | - | - | - | - | - |
|
768 |
+
| 2.8612 | 1260 | 0.0019 | - | - | - | - | - |
|
769 |
+
| 2.8839 | 1270 | 0.0052 | - | - | - | - | - |
|
770 |
+
| 2.9066 | 1280 | 0.0021 | - | - | - | - | - |
|
771 |
+
| 2.9293 | 1290 | 0.0041 | - | - | - | - | - |
|
772 |
+
| 2.9520 | 1300 | 0.0035 | - | - | - | - | - |
|
773 |
+
| 2.9747 | 1310 | 0.0044 | - | - | - | - | - |
|
774 |
+
| 2.9974 | 1320 | 0.0035 | - | - | - | - | - |
|
775 |
+
| **2.9997** | **1321** | **-** | **0.469** | **0.469** | **0.469** | **0.469** | **0.469** |
|
776 |
+
| 3.0202 | 1330 | 0.0062 | - | - | - | - | - |
|
777 |
+
| 3.0429 | 1340 | 0.0047 | - | - | - | - | - |
|
778 |
+
| 3.0656 | 1350 | 0.008 | - | - | - | - | - |
|
779 |
+
| 3.0883 | 1360 | 0.0033 | - | - | - | - | - |
|
780 |
+
| 3.1110 | 1370 | 0.0025 | - | - | - | - | - |
|
781 |
+
| 3.1337 | 1380 | 0.0069 | - | - | - | - | - |
|
782 |
+
| 3.1564 | 1390 | 0.0035 | - | - | - | - | - |
|
783 |
+
| 3.1791 | 1400 | 0.0085 | - | - | - | - | - |
|
784 |
+
| 3.2018 | 1410 | 0.007 | - | - | - | - | - |
|
785 |
+
| 3.2245 | 1420 | 0.007 | - | - | - | - | - |
|
786 |
+
| 3.2472 | 1430 | 0.0052 | - | - | - | - | - |
|
787 |
+
| 3.2699 | 1440 | 0.0019 | - | - | - | - | - |
|
788 |
+
| 3.2926 | 1450 | 0.0022 | - | - | - | - | - |
|
789 |
+
| 3.3154 | 1460 | 0.0019 | - | - | - | - | - |
|
790 |
+
| 3.3381 | 1470 | 0.0028 | - | - | - | - | - |
|
791 |
+
| 3.3608 | 1480 | 0.0042 | - | - | - | - | - |
|
792 |
+
| 3.3835 | 1490 | 0.0023 | - | - | - | - | - |
|
793 |
+
| 3.4062 | 1500 | 0.0024 | - | - | - | - | - |
|
794 |
+
| 3.4289 | 1510 | 0.0036 | - | - | - | - | - |
|
795 |
+
| 3.4516 | 1520 | 0.0038 | - | - | - | - | - |
|
796 |
+
| 3.4743 | 1530 | 0.0063 | - | - | - | - | - |
|
797 |
+
| 3.4970 | 1540 | 0.0044 | - | - | - | - | - |
|
798 |
+
| 3.5197 | 1550 | 0.0064 | - | - | - | - | - |
|
799 |
+
| 3.5424 | 1560 | 0.0053 | - | - | - | - | - |
|
800 |
+
| 3.5651 | 1570 | 0.0019 | - | - | - | - | - |
|
801 |
+
| 3.5879 | 1580 | 0.0019 | - | - | - | - | - |
|
802 |
+
| 3.6106 | 1590 | 0.0017 | - | - | - | - | - |
|
803 |
+
| 3.6333 | 1600 | 0.004 | - | - | - | - | - |
|
804 |
+
| 3.6560 | 1610 | 0.0026 | - | - | - | - | - |
|
805 |
+
| 3.6787 | 1620 | 0.0031 | - | - | - | - | - |
|
806 |
+
| 3.7014 | 1630 | 0.0043 | - | - | - | - | - |
|
807 |
+
| 3.7241 | 1640 | 0.0032 | - | - | - | - | - |
|
808 |
+
| 3.7468 | 1650 | 0.0041 | - | - | - | - | - |
|
809 |
+
| 3.7695 | 1660 | 0.0069 | - | - | - | - | - |
|
810 |
+
| 3.7922 | 1670 | 0.0063 | - | - | - | - | - |
|
811 |
+
| 3.8149 | 1680 | 0.0038 | - | - | - | - | - |
|
812 |
+
| 3.8376 | 1690 | 0.0024 | - | - | - | - | - |
|
813 |
+
| 3.8603 | 1700 | 0.0018 | - | - | - | - | - |
|
814 |
+
| 3.8831 | 1710 | 0.0034 | - | - | - | - | - |
|
815 |
+
| 3.9058 | 1720 | 0.0016 | - | - | - | - | - |
|
816 |
+
| 3.9285 | 1730 | 0.0026 | - | - | - | - | - |
|
817 |
+
| 3.9512 | 1740 | 0.0037 | - | - | - | - | - |
|
818 |
+
| 3.9739 | 1750 | 0.0024 | - | - | - | - | - |
|
819 |
+
| 3.9966 | 1760 | 0.0027 | 0.4689 | 0.4690 | 0.4689 | 0.4689 | 0.4690 |
|
820 |
+
|
821 |
+
* The bold row denotes the saved checkpoint.
|
822 |
+
</details>
|
823 |
+
|
824 |
+
### Framework Versions
|
825 |
+
- Python: 3.10.14
|
826 |
+
- Sentence Transformers: 3.3.0
|
827 |
+
- Transformers: 4.41.2
|
828 |
+
- PyTorch: 2.1.2+cu121
|
829 |
+
- Accelerate: 0.34.2
|
830 |
+
- Datasets: 2.19.1
|
831 |
+
- Tokenizers: 0.19.1
|
832 |
+
|
833 |
+
## Citation
|
834 |
+
|
835 |
+
### BibTeX
|
836 |
+
|
837 |
+
#### Sentence Transformers
|
838 |
+
```bibtex
|
839 |
+
@inproceedings{reimers-2019-sentence-bert,
|
840 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
841 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
842 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
843 |
+
month = "11",
|
844 |
+
year = "2019",
|
845 |
+
publisher = "Association for Computational Linguistics",
|
846 |
+
url = "https://arxiv.org/abs/1908.10084",
|
847 |
+
}
|
848 |
+
```
|
849 |
+
|
850 |
+
#### MatryoshkaLoss
|
851 |
+
```bibtex
|
852 |
+
@misc{kusupati2024matryoshka,
|
853 |
+
title={Matryoshka Representation Learning},
|
854 |
+
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
|
855 |
+
year={2024},
|
856 |
+
eprint={2205.13147},
|
857 |
+
archivePrefix={arXiv},
|
858 |
+
primaryClass={cs.LG}
|
859 |
+
}
|
860 |
+
```
|
861 |
+
|
862 |
+
#### MultipleNegativesRankingLoss
|
863 |
+
```bibtex
|
864 |
+
@misc{henderson2017efficient,
|
865 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
866 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
867 |
+
year={2017},
|
868 |
+
eprint={1705.00652},
|
869 |
+
archivePrefix={arXiv},
|
870 |
+
primaryClass={cs.CL}
|
871 |
+
}
|
872 |
+
```
|
873 |
+
|
874 |
+
<!--
|
875 |
+
## Glossary
|
876 |
+
|
877 |
+
*Clearly define terms in order to be accessible across audiences.*
|
878 |
+
-->
|
879 |
+
|
880 |
+
<!--
|
881 |
+
## Model Card Authors
|
882 |
+
|
883 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
884 |
+
-->
|
885 |
+
|
886 |
+
<!--
|
887 |
+
## Model Card Contact
|
888 |
+
|
889 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
890 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "BAAI/bge-base-en-v1.5",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "LABEL_0"
|
14 |
+
},
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 3072,
|
17 |
+
"label2id": {
|
18 |
+
"LABEL_0": 0
|
19 |
+
},
|
20 |
+
"layer_norm_eps": 1e-12,
|
21 |
+
"max_position_embeddings": 512,
|
22 |
+
"model_type": "bert",
|
23 |
+
"num_attention_heads": 12,
|
24 |
+
"num_hidden_layers": 12,
|
25 |
+
"pad_token_id": 0,
|
26 |
+
"position_embedding_type": "absolute",
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.41.2",
|
29 |
+
"type_vocab_size": 2,
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 30522
|
32 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.0",
|
4 |
+
"transformers": "4.41.2",
|
5 |
+
"pytorch": "2.1.2+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91bef22259c8fd9581db2afdc97e854a816c6a0d3c879dfc721ae698bc8929d4
|
3 |
+
size 437951328
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"never_split": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"strip_accents": null,
|
54 |
+
"tokenize_chinese_chars": true,
|
55 |
+
"tokenizer_class": "BertTokenizer",
|
56 |
+
"unk_token": "[UNK]"
|
57 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|