BGE base SQL Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("dat-ai/bge-base-for_text2sql")
# Run inference
sentences = [
    '\n  Given  the Column informations, generate an SQL query for the following question:\n  Column: Nomination | Actors Name | Film Name | Director | Country\n  Question: What was the film Falling up nominated for?\n  SQL Query: SELECT Nomination FROM table WHERE Film Name = Falling Up\n  ',
    'What was the film Falling up nominated for?',
    'Who wrote an episode watched by 19.01 million US viewers?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric dim_768 dim_512 dim_256 dim_128 dim_64
cosine_accuracy@1 0.4676 0.4678 0.4675 0.4677 0.4678
cosine_accuracy@3 0.4697 0.4697 0.4697 0.4696 0.4696
cosine_accuracy@5 0.4697 0.4697 0.4697 0.4698 0.4696
cosine_accuracy@10 0.4697 0.4697 0.4698 0.4698 0.4697
cosine_precision@1 0.4676 0.4678 0.4675 0.4677 0.4678
cosine_precision@3 0.1566 0.1566 0.1566 0.1565 0.1565
cosine_precision@5 0.0939 0.0939 0.0939 0.094 0.0939
cosine_precision@10 0.047 0.047 0.047 0.047 0.047
cosine_recall@1 0.4676 0.4678 0.4675 0.4677 0.4678
cosine_recall@3 0.4697 0.4697 0.4697 0.4696 0.4696
cosine_recall@5 0.4697 0.4697 0.4697 0.4698 0.4696
cosine_recall@10 0.4697 0.4697 0.4698 0.4698 0.4697
cosine_ndcg@10 0.4689 0.469 0.4689 0.4689 0.469
cosine_mrr@10 0.4686 0.4687 0.4686 0.4687 0.4687
cosine_map@100 0.4686 0.4687 0.4686 0.4687 0.4687

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 56,355 training samples
  • Columns: context and question
  • Approximate statistics based on the first 1000 samples:
    context question
    type string string
    details
    • min: 45 tokens
    • mean: 72.61 tokens
    • max: 196 tokens
    • min: 7 tokens
    • mean: 15.41 tokens
    • max: 36 tokens
  • Samples:
    context question

    Given the Column informations, generate an SQL query for the following question:
    Column: State/territory
    Text/background colour

    Given the Column informations, generate an SQL query for the following question:
    Column: State/territory
    Text/background colour

    Given the Column informations, generate an SQL query for the following question:
    Column: State/territory
    Text/background colour
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512
        ],
        "matryoshka_weights": [
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 16
  • gradient_accumulation_steps: 8
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • fp16: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 8
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss dim_768_cosine_ndcg@10 dim_512_cosine_ndcg@10 dim_256_cosine_ndcg@10 dim_128_cosine_ndcg@10 dim_64_cosine_ndcg@10
0.0227 10 1.773 - - - - -
0.0454 20 1.3231 - - - - -
0.0681 30 0.713 - - - - -
0.0908 40 0.286 - - - - -
0.1135 50 0.1013 - - - - -
0.1362 60 0.0635 - - - - -
0.1590 70 0.0453 - - - - -
0.1817 80 0.041 - - - - -
0.2044 90 0.039 - - - - -
0.2271 100 0.027 - - - - -
0.2498 110 0.0193 - - - - -
0.2725 120 0.0167 - - - - -
0.2952 130 0.016 - - - - -
0.3179 140 0.0197 - - - - -
0.3406 150 0.0217 - - - - -
0.3633 160 0.0162 - - - - -
0.3860 170 0.012 - - - - -
0.4087 180 0.013 - - - - -
0.4315 190 0.0255 - - - - -
0.4542 200 0.0229 - - - - -
0.4769 210 0.0181 - - - - -
0.4996 220 0.0195 - - - - -
0.5223 230 0.0199 - - - - -
0.5450 240 0.0144 - - - - -
0.5677 250 0.0102 - - - - -
0.5904 260 0.0101 - - - - -
0.6131 270 0.0095 - - - - -
0.6358 280 0.0173 - - - - -
0.6585 290 0.01 - - - - -
0.6812 300 0.0129 - - - - -
0.7039 310 0.0177 - - - - -
0.7267 320 0.0106 - - - - -
0.7494 330 0.0146 - - - - -
0.7721 340 0.0185 - - - - -
0.7948 350 0.0203 - - - - -
0.8175 360 0.0146 - - - - -
0.8402 370 0.0072 - - - - -
0.8629 380 0.0102 - - - - -
0.8856 390 0.0075 - - - - -
0.9083 400 0.0064 - - - - -
0.9310 410 0.0163 - - - - -
0.9537 420 0.0069 - - - - -
0.9764 430 0.0072 - - - - -
0.9991 440 0.0147 0.4688 0.4689 0.4688 0.4689 0.4689
1.0219 450 0.0151 - - - - -
1.0446 460 0.0135 - - - - -
1.0673 470 0.0189 - - - - -
1.0900 480 0.0121 - - - - -
1.1127 490 0.0064 - - - - -
1.1354 500 0.0111 - - - - -
1.1581 510 0.0103 - - - - -
1.1808 520 0.0144 - - - - -
1.2035 530 0.0151 - - - - -
1.2262 540 0.0062 - - - - -
1.2489 550 0.0104 - - - - -
1.2716 560 0.0046 - - - - -
1.2944 570 0.0056 - - - - -
1.3171 580 0.0073 - - - - -
1.3398 590 0.007 - - - - -
1.3625 600 0.0074 - - - - -
1.3852 610 0.0057 - - - - -
1.4079 620 0.0052 - - - - -
1.4306 630 0.0114 - - - - -
1.4533 640 0.0075 - - - - -
1.4760 650 0.0116 - - - - -
1.4987 660 0.0092 - - - - -
1.5214 670 0.0137 - - - - -
1.5441 680 0.0066 - - - - -
1.5668 690 0.0042 - - - - -
1.5896 700 0.0036 - - - - -
1.6123 710 0.0039 - - - - -
1.6350 720 0.0065 - - - - -
1.6577 730 0.0051 - - - - -
1.6804 740 0.0054 - - - - -
1.7031 750 0.0086 - - - - -
1.7258 760 0.0062 - - - - -
1.7485 770 0.0071 - - - - -
1.7712 780 0.0108 - - - - -
1.7939 790 0.009 - - - - -
1.8166 800 0.0075 - - - - -
1.8393 810 0.0039 - - - - -
1.8620 820 0.0047 - - - - -
1.8848 830 0.0037 - - - - -
1.9075 840 0.0037 - - - - -
1.9302 850 0.0064 - - - - -
1.9529 860 0.0047 - - - - -
1.9756 870 0.0034 - - - - -
1.9983 880 0.0061 0.4689 0.4689 0.4689 0.4690 0.4690
2.0210 890 0.0096 - - - - -
2.0437 900 0.0071 - - - - -
2.0664 910 0.0101 - - - - -
2.0891 920 0.0054 - - - - -
2.1118 930 0.0039 - - - - -
2.1345 940 0.0074 - - - - -
2.1573 950 0.0044 - - - - -
2.1800 960 0.0088 - - - - -
2.2027 970 0.0096 - - - - -
2.2254 980 0.0057 - - - - -
2.2481 990 0.0063 - - - - -
2.2708 1000 0.0026 - - - - -
2.2935 1010 0.0032 - - - - -
2.3162 1020 0.0027 - - - - -
2.3389 1030 0.0041 - - - - -
2.3616 1040 0.0052 - - - - -
2.3843 1050 0.0035 - - - - -
2.4070 1060 0.0025 - - - - -
2.4297 1070 0.0059 - - - - -
2.4525 1080 0.0048 - - - - -
2.4752 1090 0.0064 - - - - -
2.4979 1100 0.0066 - - - - -
2.5206 1110 0.0078 - - - - -
2.5433 1120 0.0057 - - - - -
2.5660 1130 0.0026 - - - - -
2.5887 1140 0.0021 - - - - -
2.6114 1150 0.0021 - - - - -
2.6341 1160 0.0047 - - - - -
2.6568 1170 0.0034 - - - - -
2.6795 1180 0.0044 - - - - -
2.7022 1190 0.0058 - - - - -
2.7250 1200 0.0043 - - - - -
2.7477 1210 0.0056 - - - - -
2.7704 1220 0.0076 - - - - -
2.7931 1230 0.0063 - - - - -
2.8158 1240 0.0033 - - - - -
2.8385 1250 0.0025 - - - - -
2.8612 1260 0.0019 - - - - -
2.8839 1270 0.0052 - - - - -
2.9066 1280 0.0021 - - - - -
2.9293 1290 0.0041 - - - - -
2.9520 1300 0.0035 - - - - -
2.9747 1310 0.0044 - - - - -
2.9974 1320 0.0035 - - - - -
2.9997 1321 - 0.469 0.469 0.469 0.469 0.469
3.0202 1330 0.0062 - - - - -
3.0429 1340 0.0047 - - - - -
3.0656 1350 0.008 - - - - -
3.0883 1360 0.0033 - - - - -
3.1110 1370 0.0025 - - - - -
3.1337 1380 0.0069 - - - - -
3.1564 1390 0.0035 - - - - -
3.1791 1400 0.0085 - - - - -
3.2018 1410 0.007 - - - - -
3.2245 1420 0.007 - - - - -
3.2472 1430 0.0052 - - - - -
3.2699 1440 0.0019 - - - - -
3.2926 1450 0.0022 - - - - -
3.3154 1460 0.0019 - - - - -
3.3381 1470 0.0028 - - - - -
3.3608 1480 0.0042 - - - - -
3.3835 1490 0.0023 - - - - -
3.4062 1500 0.0024 - - - - -
3.4289 1510 0.0036 - - - - -
3.4516 1520 0.0038 - - - - -
3.4743 1530 0.0063 - - - - -
3.4970 1540 0.0044 - - - - -
3.5197 1550 0.0064 - - - - -
3.5424 1560 0.0053 - - - - -
3.5651 1570 0.0019 - - - - -
3.5879 1580 0.0019 - - - - -
3.6106 1590 0.0017 - - - - -
3.6333 1600 0.004 - - - - -
3.6560 1610 0.0026 - - - - -
3.6787 1620 0.0031 - - - - -
3.7014 1630 0.0043 - - - - -
3.7241 1640 0.0032 - - - - -
3.7468 1650 0.0041 - - - - -
3.7695 1660 0.0069 - - - - -
3.7922 1670 0.0063 - - - - -
3.8149 1680 0.0038 - - - - -
3.8376 1690 0.0024 - - - - -
3.8603 1700 0.0018 - - - - -
3.8831 1710 0.0034 - - - - -
3.9058 1720 0.0016 - - - - -
3.9285 1730 0.0026 - - - - -
3.9512 1740 0.0037 - - - - -
3.9739 1750 0.0024 - - - - -
3.9966 1760 0.0027 0.4689 0.4690 0.4689 0.4689 0.4690
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 3.3.0
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.34.2
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
6
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for dat-ai/bge-base-for_text2sql

Finetuned
(365)
this model

Evaluation results