dasaprakashk commited on
Commit
13c1edc
·
1 Parent(s): 34dbbac

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.87 +/- 0.45
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:feaa47c142b29372857e411792e9e5e0a0a00cd1f03c953eb8894823cb898a0e
3
+ size 108028
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd6ef3eec10>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fd6ef3edc40>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1679214770581416289,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAZNTVPpAljbxroQs/ZNTVPpAljbxroQs/ZNTVPpAljbxroQs/ZNTVPpAljbxroQs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMXgpv7WeGD9CVNm/cq2WP/lEm7678G4/GkxRvhXzVD7o+ag/yFycP+gFzb3Eg5u/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABk1NU+kCWNvGuhCz+eNWk82MMfuzQ6oDtk1NU+kCWNvGuhCz+eNWk82MMfuzQ6oDtk1NU+kCWNvGuhCz+eNWk82MMfuzQ6oDtk1NU+kCWNvGuhCz+eNWk82MMfuzQ6oDuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.41763604 -0.01722983 0.5454318 ]\n [ 0.41763604 -0.01722983 0.5454318 ]\n [ 0.41763604 -0.01722983 0.5454318 ]\n [ 0.41763604 -0.01722983 0.5454318 ]]",
60
+ "desired_goal": "[[-0.6619902 0.5961717 -1.6978838 ]\n [ 1.1771681 -0.3032606 0.93336076]\n [-0.20439187 0.20795853 1.3201265 ]\n [ 1.2215815 -0.10010892 -1.2149587 ]]",
61
+ "observation": "[[ 0.41763604 -0.01722983 0.5454318 0.01423397 -0.00243782 0.00488975]\n [ 0.41763604 -0.01722983 0.5454318 0.01423397 -0.00243782 0.00488975]\n [ 0.41763604 -0.01722983 0.5454318 0.01423397 -0.00243782 0.00488975]\n [ 0.41763604 -0.01722983 0.5454318 0.01423397 -0.00243782 0.00488975]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcNDBPWLMOD26Ggo80aVtvFa6db0E4lY+zR3hvWgOpL0VdJw9RTpvPbhZFb7vJyM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.09463584 0.04511679 0.00842922]\n [-0.01450487 -0.05999216 0.20984656]\n [-0.10992012 -0.0801056 0.07639328]\n [ 0.05840518 -0.14585006 0.15933202]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAizy64fYzr+UhpRSlIwBbJRLMowBdJRHQKj0oPtD2J11fZQoaAZoCWgPQwi7DtWUZB3fv5SGlFKUaBVLMmgWR0Co9GU/4ZdfdX2UKGgGaAloD0MIeV2/YDfs7r+UhpRSlGgVSzJoFkdAqPQnEyckMXV9lChoBmgJaA9DCBcMrrmjf+O/lIaUUpRoFUsyaBZHQKjz61/lQuV1fZQoaAZoCWgPQwg/VvDbEOPgv5SGlFKUaBVLMmgWR0Co9o2e6I3zdX2UKGgGaAloD0MI5EnSNZPv4r+UhpRSlGgVSzJoFkdAqPZR0IToMnV9lChoBmgJaA9DCMtlo3N+CuW/lIaUUpRoFUsyaBZHQKj2E4SYgJV1fZQoaAZoCWgPQwgD7nn+tFHvv5SGlFKUaBVLMmgWR0Co9df+bVjJdX2UKGgGaAloD0MImbnA5bFm8L+UhpRSlGgVSzJoFkdAqPhpLmITG3V9lChoBmgJaA9DCMkdNpGZi+C/lIaUUpRoFUsyaBZHQKj4Lbah6B11fZQoaAZoCWgPQwgOar+1EyXsv5SGlFKUaBVLMmgWR0Co9/AGSpzcdX2UKGgGaAloD0MInSrfMxIh7L+UhpRSlGgVSzJoFkdAqPe0sz2vjnV9lChoBmgJaA9DCDDa44V0eOi/lIaUUpRoFUsyaBZHQKj6Z9Tgl4V1fZQoaAZoCWgPQwhnmrD9ZAzgv5SGlFKUaBVLMmgWR0Co+iwWepXIdX2UKGgGaAloD0MI46qy74rg6L+UhpRSlGgVSzJoFkdAqPnt8ohIOHV9lChoBmgJaA9DCAEW+fVD7O2/lIaUUpRoFUsyaBZHQKj5smGdqcp1fZQoaAZoCWgPQwizzY3pCUvQv5SGlFKUaBVLMmgWR0Co/FYG2TgVdX2UKGgGaAloD0MIv36IDRZO57+UhpRSlGgVSzJoFkdAqPwaYRdyDXV9lChoBmgJaA9DCBNDcjJxq9S/lIaUUpRoFUsyaBZHQKj73HPNVzZ1fZQoaAZoCWgPQwjgnXx6bEvkv5SGlFKUaBVLMmgWR0Co+6EjgQ6IdX2UKGgGaAloD0MIC/FIvDyd4r+UhpRSlGgVSzJoFkdAqP5N03fhuXV9lChoBmgJaA9DCLwH6L6c2eW/lIaUUpRoFUsyaBZHQKj+EgctGut1fZQoaAZoCWgPQwg/kLxzKMPjv5SGlFKUaBVLMmgWR0Co/dV50KZ2dX2UKGgGaAloD0MIK/aX3ZMH5b+UhpRSlGgVSzJoFkdAqP2aHARChXV9lChoBmgJaA9DCAubAS7Ilt6/lIaUUpRoFUsyaBZHQKj/wLofSx91fZQoaAZoCWgPQwgE6Pf9mxfXv5SGlFKUaBVLMmgWR0Co/4QBo24vdX2UKGgGaAloD0MIgjgPJzAd5r+UhpRSlGgVSzJoFkdAqP9E7Sy+pXV9lChoBmgJaA9DCAzJycStgti/lIaUUpRoFUsyaBZHQKj/CH58BuJ1fZQoaAZoCWgPQwhxV68io4Pqv5SGlFKUaBVLMmgWR0CpAOTzErGzdX2UKGgGaAloD0MIXATG+gYm37+UhpRSlGgVSzJoFkdAqQCoJu2qk3V9lChoBmgJaA9DCO6yX3e6c+O/lIaUUpRoFUsyaBZHQKkAaX0Gu9x1fZQoaAZoCWgPQwiL+iR32ETyv5SGlFKUaBVLMmgWR0CpAC0Uwi7kdX2UKGgGaAloD0MIp1g1CHM77L+UhpRSlGgVSzJoFkdAqQINc6eXiXV9lChoBmgJaA9DCBO54Az+/uq/lIaUUpRoFUsyaBZHQKkB0KXv6TJ1fZQoaAZoCWgPQwhh3Xh3ZCzjv5SGlFKUaBVLMmgWR0CpAZGT9sJqdX2UKGgGaAloD0MIc/ON6J517b+UhpRSlGgVSzJoFkdAqQFVGgBcRnV9lChoBmgJaA9DCJ6VtOIbCt+/lIaUUpRoFUsyaBZHQKkDKzZ6D5F1fZQoaAZoCWgPQwi77UJznUbzv5SGlFKUaBVLMmgWR0CpAu5fMOf/dX2UKGgGaAloD0MIe/fHe9VK4b+UhpRSlGgVSzJoFkdAqQKvM6ij+XV9lChoBmgJaA9DCI8aE2IuafG/lIaUUpRoFUsyaBZHQKkCcr9VFQV1fZQoaAZoCWgPQwieYP91btrqv5SGlFKUaBVLMmgWR0CpBGFbFCLNdX2UKGgGaAloD0MIEOm3rwPn7L+UhpRSlGgVSzJoFkdAqQQlKh+OO3V9lChoBmgJaA9DCB5U4jrGFea/lIaUUpRoFUsyaBZHQKkD5f51vEV1fZQoaAZoCWgPQwjVeVT83xH0v5SGlFKUaBVLMmgWR0CpA6lNDc/MdX2UKGgGaAloD0MIPKOtSiL76L+UhpRSlGgVSzJoFkdAqQV9qQA+6nV9lChoBmgJaA9DCNS6DWq/NeW/lIaUUpRoFUsyaBZHQKkFQNpdrwh1fZQoaAZoCWgPQwicai3MQrvnv5SGlFKUaBVLMmgWR0CpBQGeUY8/dX2UKGgGaAloD0MI3IMQkC+h6L+UhpRSlGgVSzJoFkdAqQTFFBppOHV9lChoBmgJaA9DCH8XtmYrr+S/lIaUUpRoFUsyaBZHQKkGnyJ9Aop1fZQoaAZoCWgPQwirzmqBPSbUv5SGlFKUaBVLMmgWR0CpBmJ3gUDddX2UKGgGaAloD0MIYoGv6NZr3r+UhpRSlGgVSzJoFkdAqQYjS5RTCXV9lChoBmgJaA9DCCLgEKrU7Nu/lIaUUpRoFUsyaBZHQKkF5rjYI0J1fZQoaAZoCWgPQwiEvB5Mio/jv5SGlFKUaBVLMmgWR0CpB7QDmr80dX2UKGgGaAloD0MICK2HLxNF3r+UhpRSlGgVSzJoFkdAqQd3UrkKeHV9lChoBmgJaA9DCFOzB1qBIea/lIaUUpRoFUsyaBZHQKkHOCjDbah1fZQoaAZoCWgPQwik42pkV1rov5SGlFKUaBVLMmgWR0CpBvux8lXzdX2UKGgGaAloD0MItJHrppTX3b+UhpRSlGgVSzJoFkdAqQjY7DEWI3V9lChoBmgJaA9DCIXpew3BceW/lIaUUpRoFUsyaBZHQKkInE5yU9p1fZQoaAZoCWgPQwhjtI6qJgjuv5SGlFKUaBVLMmgWR0CpCF1mjCYUdX2UKGgGaAloD0MI3V1nQ/4Z6L+UhpRSlGgVSzJoFkdAqQghCSidrnV9lChoBmgJaA9DCOi+nNmu0NS/lIaUUpRoFUsyaBZHQKkJ9w97ngZ1fZQoaAZoCWgPQwiIY13cRgPjv5SGlFKUaBVLMmgWR0CpCbow22ofdX2UKGgGaAloD0MIkga3tYXn7r+UhpRSlGgVSzJoFkdAqQl67EpAlnV9lChoBmgJaA9DCHMtWoC2Veu/lIaUUpRoFUsyaBZHQKkJPmg8KXx1fZQoaAZoCWgPQwjxhF5/Ep/mv5SGlFKUaBVLMmgWR0CpCxfzSThYdX2UKGgGaAloD0MIsJC5Mqg24r+UhpRSlGgVSzJoFkdAqQrbI7vG63V9lChoBmgJaA9DCGEZG7rZn+W/lIaUUpRoFUsyaBZHQKkKm/qxC6Z1fZQoaAZoCWgPQwhX68TleAXOv5SGlFKUaBVLMmgWR0CpCl9wm3OOdX2UKGgGaAloD0MIk//J370j7L+UhpRSlGgVSzJoFkdAqQw80Ltu1nV9lChoBmgJaA9DCNLCZRU2A+u/lIaUUpRoFUsyaBZHQKkMANBnjAB1fZQoaAZoCWgPQwh1BHCzeDHpv5SGlFKUaBVLMmgWR0CpC8MN2C/XdX2UKGgGaAloD0MI1LoNar814L+UhpRSlGgVSzJoFkdAqQuIgs9SuXV9lChoBmgJaA9DCEvIBz2b1eW/lIaUUpRoFUsyaBZHQKkNYokRjBl1fZQoaAZoCWgPQwhPz7uxoDDjv5SGlFKUaBVLMmgWR0CpDSXDWK/EdX2UKGgGaAloD0MIV+wvuycP5L+UhpRSlGgVSzJoFkdAqQzmhsZYP3V9lChoBmgJaA9DCPLs8q0P6+G/lIaUUpRoFUsyaBZHQKkMqfdRBNV1fZQoaAZoCWgPQwhvZB75g4Hpv5SGlFKUaBVLMmgWR0CpDpAzxgAqdX2UKGgGaAloD0MIEAcJUb4g47+UhpRSlGgVSzJoFkdAqQ5ThYNiIHV9lChoBmgJaA9DCImXp3NFKdq/lIaUUpRoFUsyaBZHQKkOFGOMl1N1fZQoaAZoCWgPQwi2MXbCS/Dhv5SGlFKUaBVLMmgWR0CpDdgKnei0dX2UKGgGaAloD0MIVydnKO748b+UhpRSlGgVSzJoFkdAqQ+vOlfqo3V9lChoBmgJaA9DCKG5TiMtldW/lIaUUpRoFUsyaBZHQKkPcnrIHTt1fZQoaAZoCWgPQwg5J/bQPlbov5SGlFKUaBVLMmgWR0CpDzOMMqjKdX2UKGgGaAloD0MIQUZAhSNI5b+UhpRSlGgVSzJoFkdAqQ73Dej2z3V9lChoBmgJaA9DCC4fSUkPQ9+/lIaUUpRoFUsyaBZHQKkQ1Hc1wYN1fZQoaAZoCWgPQwjvy5ntCv3uv5SGlFKUaBVLMmgWR0CpEJeGwiaBdX2UKGgGaAloD0MIMSb9vRSe8r+UhpRSlGgVSzJoFkdAqRBYYcebNXV9lChoBmgJaA9DCDcY6rDCLda/lIaUUpRoFUsyaBZHQKkQG+vhZQp1fZQoaAZoCWgPQwg3xeOiWkTWv5SGlFKUaBVLMmgWR0CpEfIAXEZSdX2UKGgGaAloD0MIKVlOQukL3r+UhpRSlGgVSzJoFkdAqRG1Li++NHV9lChoBmgJaA9DCKopyToc3fK/lIaUUpRoFUsyaBZHQKkRdhG6PKd1fZQoaAZoCWgPQwh8fEJ23sbqv5SGlFKUaBVLMmgWR0CpETl6JIlMdX2UKGgGaAloD0MI3XpNDwoK97+UhpRSlGgVSzJoFkdAqRM9TvRZ2nV9lChoBmgJaA9DCOW36GSptfe/lIaUUpRoFUsyaBZHQKkTAeumrKh1fZQoaAZoCWgPQwiMo3ITtfT3v5SGlFKUaBVLMmgWR0CpEsQVTJhfdX2UKGgGaAloD0MIgJwwYTQr5L+UhpRSlGgVSzJoFkdAqRKI2n8893V9lChoBmgJaA9DCHsxlBPtqu2/lIaUUpRoFUsyaBZHQKkVJL0z0pV1fZQoaAZoCWgPQwjSVbq7zkbyv5SGlFKUaBVLMmgWR0CpFOioS+QEdX2UKGgGaAloD0MIXCBB8WPM67+UhpRSlGgVSzJoFkdAqRSqSDAaenV9lChoBmgJaA9DCIgQV87eGfS/lIaUUpRoFUsyaBZHQKkUbrRjSXt1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c84d95b6fd9de85d1b3238cad7e90b5498e1daf18d6b7ebed8db87038a9481d
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:109e35e11fd654c4da30f207065907bf6800bd1be9be5a414d78791627b9f687
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd6ef3eec10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd6ef3edc40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679214770581416289, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAZNTVPpAljbxroQs/ZNTVPpAljbxroQs/ZNTVPpAljbxroQs/ZNTVPpAljbxroQs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMXgpv7WeGD9CVNm/cq2WP/lEm7678G4/GkxRvhXzVD7o+ag/yFycP+gFzb3Eg5u/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABk1NU+kCWNvGuhCz+eNWk82MMfuzQ6oDtk1NU+kCWNvGuhCz+eNWk82MMfuzQ6oDtk1NU+kCWNvGuhCz+eNWk82MMfuzQ6oDtk1NU+kCWNvGuhCz+eNWk82MMfuzQ6oDuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.41763604 -0.01722983 0.5454318 ]\n [ 0.41763604 -0.01722983 0.5454318 ]\n [ 0.41763604 -0.01722983 0.5454318 ]\n [ 0.41763604 -0.01722983 0.5454318 ]]", "desired_goal": "[[-0.6619902 0.5961717 -1.6978838 ]\n [ 1.1771681 -0.3032606 0.93336076]\n [-0.20439187 0.20795853 1.3201265 ]\n [ 1.2215815 -0.10010892 -1.2149587 ]]", "observation": "[[ 0.41763604 -0.01722983 0.5454318 0.01423397 -0.00243782 0.00488975]\n [ 0.41763604 -0.01722983 0.5454318 0.01423397 -0.00243782 0.00488975]\n [ 0.41763604 -0.01722983 0.5454318 0.01423397 -0.00243782 0.00488975]\n [ 0.41763604 -0.01722983 0.5454318 0.01423397 -0.00243782 0.00488975]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcNDBPWLMOD26Ggo80aVtvFa6db0E4lY+zR3hvWgOpL0VdJw9RTpvPbhZFb7vJyM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.09463584 0.04511679 0.00842922]\n [-0.01450487 -0.05999216 0.20984656]\n [-0.10992012 -0.0801056 0.07639328]\n [ 0.05840518 -0.14585006 0.15933202]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAizy64fYzr+UhpRSlIwBbJRLMowBdJRHQKj0oPtD2J11fZQoaAZoCWgPQwi7DtWUZB3fv5SGlFKUaBVLMmgWR0Co9GU/4ZdfdX2UKGgGaAloD0MIeV2/YDfs7r+UhpRSlGgVSzJoFkdAqPQnEyckMXV9lChoBmgJaA9DCBcMrrmjf+O/lIaUUpRoFUsyaBZHQKjz61/lQuV1fZQoaAZoCWgPQwg/VvDbEOPgv5SGlFKUaBVLMmgWR0Co9o2e6I3zdX2UKGgGaAloD0MI5EnSNZPv4r+UhpRSlGgVSzJoFkdAqPZR0IToMnV9lChoBmgJaA9DCMtlo3N+CuW/lIaUUpRoFUsyaBZHQKj2E4SYgJV1fZQoaAZoCWgPQwgD7nn+tFHvv5SGlFKUaBVLMmgWR0Co9df+bVjJdX2UKGgGaAloD0MImbnA5bFm8L+UhpRSlGgVSzJoFkdAqPhpLmITG3V9lChoBmgJaA9DCMkdNpGZi+C/lIaUUpRoFUsyaBZHQKj4Lbah6B11fZQoaAZoCWgPQwgOar+1EyXsv5SGlFKUaBVLMmgWR0Co9/AGSpzcdX2UKGgGaAloD0MInSrfMxIh7L+UhpRSlGgVSzJoFkdAqPe0sz2vjnV9lChoBmgJaA9DCDDa44V0eOi/lIaUUpRoFUsyaBZHQKj6Z9Tgl4V1fZQoaAZoCWgPQwhnmrD9ZAzgv5SGlFKUaBVLMmgWR0Co+iwWepXIdX2UKGgGaAloD0MI46qy74rg6L+UhpRSlGgVSzJoFkdAqPnt8ohIOHV9lChoBmgJaA9DCAEW+fVD7O2/lIaUUpRoFUsyaBZHQKj5smGdqcp1fZQoaAZoCWgPQwizzY3pCUvQv5SGlFKUaBVLMmgWR0Co/FYG2TgVdX2UKGgGaAloD0MIv36IDRZO57+UhpRSlGgVSzJoFkdAqPwaYRdyDXV9lChoBmgJaA9DCBNDcjJxq9S/lIaUUpRoFUsyaBZHQKj73HPNVzZ1fZQoaAZoCWgPQwjgnXx6bEvkv5SGlFKUaBVLMmgWR0Co+6EjgQ6IdX2UKGgGaAloD0MIC/FIvDyd4r+UhpRSlGgVSzJoFkdAqP5N03fhuXV9lChoBmgJaA9DCLwH6L6c2eW/lIaUUpRoFUsyaBZHQKj+EgctGut1fZQoaAZoCWgPQwg/kLxzKMPjv5SGlFKUaBVLMmgWR0Co/dV50KZ2dX2UKGgGaAloD0MIK/aX3ZMH5b+UhpRSlGgVSzJoFkdAqP2aHARChXV9lChoBmgJaA9DCAubAS7Ilt6/lIaUUpRoFUsyaBZHQKj/wLofSx91fZQoaAZoCWgPQwgE6Pf9mxfXv5SGlFKUaBVLMmgWR0Co/4QBo24vdX2UKGgGaAloD0MIgjgPJzAd5r+UhpRSlGgVSzJoFkdAqP9E7Sy+pXV9lChoBmgJaA9DCAzJycStgti/lIaUUpRoFUsyaBZHQKj/CH58BuJ1fZQoaAZoCWgPQwhxV68io4Pqv5SGlFKUaBVLMmgWR0CpAOTzErGzdX2UKGgGaAloD0MIXATG+gYm37+UhpRSlGgVSzJoFkdAqQCoJu2qk3V9lChoBmgJaA9DCO6yX3e6c+O/lIaUUpRoFUsyaBZHQKkAaX0Gu9x1fZQoaAZoCWgPQwiL+iR32ETyv5SGlFKUaBVLMmgWR0CpAC0Uwi7kdX2UKGgGaAloD0MIp1g1CHM77L+UhpRSlGgVSzJoFkdAqQINc6eXiXV9lChoBmgJaA9DCBO54Az+/uq/lIaUUpRoFUsyaBZHQKkB0KXv6TJ1fZQoaAZoCWgPQwhh3Xh3ZCzjv5SGlFKUaBVLMmgWR0CpAZGT9sJqdX2UKGgGaAloD0MIc/ON6J517b+UhpRSlGgVSzJoFkdAqQFVGgBcRnV9lChoBmgJaA9DCJ6VtOIbCt+/lIaUUpRoFUsyaBZHQKkDKzZ6D5F1fZQoaAZoCWgPQwi77UJznUbzv5SGlFKUaBVLMmgWR0CpAu5fMOf/dX2UKGgGaAloD0MIe/fHe9VK4b+UhpRSlGgVSzJoFkdAqQKvM6ij+XV9lChoBmgJaA9DCI8aE2IuafG/lIaUUpRoFUsyaBZHQKkCcr9VFQV1fZQoaAZoCWgPQwieYP91btrqv5SGlFKUaBVLMmgWR0CpBGFbFCLNdX2UKGgGaAloD0MIEOm3rwPn7L+UhpRSlGgVSzJoFkdAqQQlKh+OO3V9lChoBmgJaA9DCB5U4jrGFea/lIaUUpRoFUsyaBZHQKkD5f51vEV1fZQoaAZoCWgPQwjVeVT83xH0v5SGlFKUaBVLMmgWR0CpA6lNDc/MdX2UKGgGaAloD0MIPKOtSiL76L+UhpRSlGgVSzJoFkdAqQV9qQA+6nV9lChoBmgJaA9DCNS6DWq/NeW/lIaUUpRoFUsyaBZHQKkFQNpdrwh1fZQoaAZoCWgPQwicai3MQrvnv5SGlFKUaBVLMmgWR0CpBQGeUY8/dX2UKGgGaAloD0MI3IMQkC+h6L+UhpRSlGgVSzJoFkdAqQTFFBppOHV9lChoBmgJaA9DCH8XtmYrr+S/lIaUUpRoFUsyaBZHQKkGnyJ9Aop1fZQoaAZoCWgPQwirzmqBPSbUv5SGlFKUaBVLMmgWR0CpBmJ3gUDddX2UKGgGaAloD0MIYoGv6NZr3r+UhpRSlGgVSzJoFkdAqQYjS5RTCXV9lChoBmgJaA9DCCLgEKrU7Nu/lIaUUpRoFUsyaBZHQKkF5rjYI0J1fZQoaAZoCWgPQwiEvB5Mio/jv5SGlFKUaBVLMmgWR0CpB7QDmr80dX2UKGgGaAloD0MICK2HLxNF3r+UhpRSlGgVSzJoFkdAqQd3UrkKeHV9lChoBmgJaA9DCFOzB1qBIea/lIaUUpRoFUsyaBZHQKkHOCjDbah1fZQoaAZoCWgPQwik42pkV1rov5SGlFKUaBVLMmgWR0CpBvux8lXzdX2UKGgGaAloD0MItJHrppTX3b+UhpRSlGgVSzJoFkdAqQjY7DEWI3V9lChoBmgJaA9DCIXpew3BceW/lIaUUpRoFUsyaBZHQKkInE5yU9p1fZQoaAZoCWgPQwhjtI6qJgjuv5SGlFKUaBVLMmgWR0CpCF1mjCYUdX2UKGgGaAloD0MI3V1nQ/4Z6L+UhpRSlGgVSzJoFkdAqQghCSidrnV9lChoBmgJaA9DCOi+nNmu0NS/lIaUUpRoFUsyaBZHQKkJ9w97ngZ1fZQoaAZoCWgPQwiIY13cRgPjv5SGlFKUaBVLMmgWR0CpCbow22ofdX2UKGgGaAloD0MIkga3tYXn7r+UhpRSlGgVSzJoFkdAqQl67EpAlnV9lChoBmgJaA9DCHMtWoC2Veu/lIaUUpRoFUsyaBZHQKkJPmg8KXx1fZQoaAZoCWgPQwjxhF5/Ep/mv5SGlFKUaBVLMmgWR0CpCxfzSThYdX2UKGgGaAloD0MIsJC5Mqg24r+UhpRSlGgVSzJoFkdAqQrbI7vG63V9lChoBmgJaA9DCGEZG7rZn+W/lIaUUpRoFUsyaBZHQKkKm/qxC6Z1fZQoaAZoCWgPQwhX68TleAXOv5SGlFKUaBVLMmgWR0CpCl9wm3OOdX2UKGgGaAloD0MIk//J370j7L+UhpRSlGgVSzJoFkdAqQw80Ltu1nV9lChoBmgJaA9DCNLCZRU2A+u/lIaUUpRoFUsyaBZHQKkMANBnjAB1fZQoaAZoCWgPQwh1BHCzeDHpv5SGlFKUaBVLMmgWR0CpC8MN2C/XdX2UKGgGaAloD0MI1LoNar814L+UhpRSlGgVSzJoFkdAqQuIgs9SuXV9lChoBmgJaA9DCEvIBz2b1eW/lIaUUpRoFUsyaBZHQKkNYokRjBl1fZQoaAZoCWgPQwhPz7uxoDDjv5SGlFKUaBVLMmgWR0CpDSXDWK/EdX2UKGgGaAloD0MIV+wvuycP5L+UhpRSlGgVSzJoFkdAqQzmhsZYP3V9lChoBmgJaA9DCPLs8q0P6+G/lIaUUpRoFUsyaBZHQKkMqfdRBNV1fZQoaAZoCWgPQwhvZB75g4Hpv5SGlFKUaBVLMmgWR0CpDpAzxgAqdX2UKGgGaAloD0MIEAcJUb4g47+UhpRSlGgVSzJoFkdAqQ5ThYNiIHV9lChoBmgJaA9DCImXp3NFKdq/lIaUUpRoFUsyaBZHQKkOFGOMl1N1fZQoaAZoCWgPQwi2MXbCS/Dhv5SGlFKUaBVLMmgWR0CpDdgKnei0dX2UKGgGaAloD0MIVydnKO748b+UhpRSlGgVSzJoFkdAqQ+vOlfqo3V9lChoBmgJaA9DCKG5TiMtldW/lIaUUpRoFUsyaBZHQKkPcnrIHTt1fZQoaAZoCWgPQwg5J/bQPlbov5SGlFKUaBVLMmgWR0CpDzOMMqjKdX2UKGgGaAloD0MIQUZAhSNI5b+UhpRSlGgVSzJoFkdAqQ73Dej2z3V9lChoBmgJaA9DCC4fSUkPQ9+/lIaUUpRoFUsyaBZHQKkQ1Hc1wYN1fZQoaAZoCWgPQwjvy5ntCv3uv5SGlFKUaBVLMmgWR0CpEJeGwiaBdX2UKGgGaAloD0MIMSb9vRSe8r+UhpRSlGgVSzJoFkdAqRBYYcebNXV9lChoBmgJaA9DCDcY6rDCLda/lIaUUpRoFUsyaBZHQKkQG+vhZQp1fZQoaAZoCWgPQwg3xeOiWkTWv5SGlFKUaBVLMmgWR0CpEfIAXEZSdX2UKGgGaAloD0MIKVlOQukL3r+UhpRSlGgVSzJoFkdAqRG1Li++NHV9lChoBmgJaA9DCKopyToc3fK/lIaUUpRoFUsyaBZHQKkRdhG6PKd1fZQoaAZoCWgPQwh8fEJ23sbqv5SGlFKUaBVLMmgWR0CpETl6JIlMdX2UKGgGaAloD0MI3XpNDwoK97+UhpRSlGgVSzJoFkdAqRM9TvRZ2nV9lChoBmgJaA9DCOW36GSptfe/lIaUUpRoFUsyaBZHQKkTAeumrKh1fZQoaAZoCWgPQwiMo3ITtfT3v5SGlFKUaBVLMmgWR0CpEsQVTJhfdX2UKGgGaAloD0MIgJwwYTQr5L+UhpRSlGgVSzJoFkdAqRKI2n8893V9lChoBmgJaA9DCHsxlBPtqu2/lIaUUpRoFUsyaBZHQKkVJL0z0pV1fZQoaAZoCWgPQwjSVbq7zkbyv5SGlFKUaBVLMmgWR0CpFOioS+QEdX2UKGgGaAloD0MIXCBB8WPM67+UhpRSlGgVSzJoFkdAqRSqSDAaenV9lChoBmgJaA9DCIgQV87eGfS/lIaUUpRoFUsyaBZHQKkUbrRjSXt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (323 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.8663255348335952, "std_reward": 0.4515932505010982, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-19T09:33:35.002898"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82d875269371f12deeefeffafb806955b2974274f6804b4498fde44489fa669f
3
+ size 3056