exdysa commited on
Commit
5ba4fbf
·
verified ·
1 Parent(s): 2bbe167

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +94 -257
README.md CHANGED
@@ -1,262 +1,99 @@
1
- Quantization made by Richard Erkhov.
2
-
3
- [Github](https://github.com/RichardErkhov)
4
-
5
- [Discord](https://discord.gg/pvy7H8DZMG)
6
-
7
- [Request more models](https://github.com/RichardErkhov/quant_request)
8
-
9
-
10
- suzume-llama-3-8B-multilingual-orpo-borda-top25 - GGUF
11
- - Model creator: https://huggingface.co/lightblue/
12
- - Original model: https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top25/
13
-
14
-
15
- | Name | Quant method | Size |
16
- | ---- | ---- | ---- |
17
- | [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q2_K.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q2_K.gguf) | Q2_K | 2.96GB |
18
- | [suzume-llama-3-8B-multilingual-orpo-borda-top25.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.IQ3_XS.gguf) | IQ3_XS | 3.28GB |
19
- | [suzume-llama-3-8B-multilingual-orpo-borda-top25.IQ3_S.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.IQ3_S.gguf) | IQ3_S | 3.43GB |
20
- | [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q3_K_S.gguf) | Q3_K_S | 3.41GB |
21
- | [suzume-llama-3-8B-multilingual-orpo-borda-top25.IQ3_M.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.IQ3_M.gguf) | IQ3_M | 3.52GB |
22
- | [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q3_K.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q3_K.gguf) | Q3_K | 3.74GB |
23
- | [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q3_K_M.gguf) | Q3_K_M | 3.74GB |
24
- | [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q3_K_L.gguf) | Q3_K_L | 4.03GB |
25
- | [suzume-llama-3-8B-multilingual-orpo-borda-top25.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.IQ4_XS.gguf) | IQ4_XS | 4.18GB |
26
- | [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_0.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_0.gguf) | Q4_0 | 4.34GB |
27
- | [suzume-llama-3-8B-multilingual-orpo-borda-top25.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.IQ4_NL.gguf) | IQ4_NL | 4.38GB |
28
- | [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_K_S.gguf) | Q4_K_S | 4.37GB |
29
- | [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_K.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_K.gguf) | Q4_K | 4.58GB |
30
- | [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_K_M.gguf) | Q4_K_M | 4.58GB |
31
- | [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_1.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_1.gguf) | Q4_1 | 4.78GB |
32
- | [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q5_0.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q5_0.gguf) | Q5_0 | 5.21GB |
33
- | [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q5_K_S.gguf) | Q5_K_S | 5.21GB |
34
- | [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q5_K.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q5_K.gguf) | Q5_K | 5.34GB |
35
- | [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q5_K_M.gguf) | Q5_K_M | 5.34GB |
36
- | [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q5_1.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q5_1.gguf) | Q5_1 | 5.65GB |
37
- | [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q6_K.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q6_K.gguf) | Q6_K | 6.14GB |
38
- | [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q8_0.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q8_0.gguf) | Q8_0 | 7.95GB |
39
-
40
-
41
-
42
-
43
- Original model description:
44
  ---
 
45
  license: cc-by-nc-4.0
46
  tags:
47
- - generated_from_trainer
48
- base_model: lightblue/suzume-llama-3-8B-multilingual
49
- model-index:
50
- - name: workspace/llm_training/axolotl/llama3-multilingual-orpo/output_mitsu_top25_borda
51
- results: []
52
- ---
53
-
54
- # Suzume ORPO
55
-
56
- <p align="center">
57
- <img width=500 src="https://cdn-uploads.huggingface.co/production/uploads/64b63f8ad57e02621dc93c8b/kWQSu02YfgYdUQqv4s5lq.png" alt="Suzume with Mitsu - a Japanese tree sparrow with honey on it"/>
58
- </p>
59
-
60
- [[Paper]](https://arxiv.org/abs/2405.18952) [[Dataset]](https://huggingface.co/datasets/lightblue/mitsu)
61
-
62
- This is Suzume ORPO, an ORPO trained fine-tune of the [lightblue/suzume-llama-3-8B-multilingual](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual) model using our [lightblue/mitsu](https://huggingface.co/datasets/lightblue/mitsu) dataset.
63
-
64
- We have trained several versions of this model using ORPO and so recommend that you use the best performing model from our tests, [lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half).
65
-
66
- Note that this model has a non-commerical license as we used the Command R and Command R+ models to generate our training data for this model ([lightblue/mitsu](https://huggingface.co/datasets/lightblue/mitsu)).
67
-
68
- We are currently working on a developing a commerically usable model, so stay tuned for that!
69
-
70
- # Model list
71
-
72
- We have ORPO trained the following models using different proportions of the [lightblue/mitsu](https://huggingface.co/datasets/lightblue/mitsu) dataset:
73
- * Trained on the top/bottom responses of all prompts in the dataset: [lightblue/suzume-llama-3-8B-multilingual-orpo-borda-full](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-full)
74
- * Trained on the top/bottom responses of the prompts of the 75\% most consistently ranked responses in the dataset: [lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top75](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top75)
75
- * Trained on the top/bottom responses of the prompts of the 50\% most consistently ranked responses in the dataset: [lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half)
76
- * Trained on the top/bottom responses of the prompts of the 25\% most consistently ranked responses in the dataset: [lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top25](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top25)
77
-
78
- # Model results
79
-
80
- We compare the MT-Bench scores across 6 languages for our 4 ORPO trained models, as well as some baselines:
81
-
82
- * [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) - The foundation model that our models are ultimately built upon
83
- * [Nexusflow/Starling-LM-7B-beta](https://huggingface.co/Nexusflow/Starling-LM-7B-beta) - The highest performing open model on the Chatbot arena that is of a similar size to ours
84
- * gpt-3.5-turbo - A fairly high quality (although not state-of-the-art) proprietary LLM
85
- * [lightblue/suzume-llama-3-8B-multilingual](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual) - The base model which we train our ORPO finetunes from
86
-
87
- | **MT-Bench language** | **meta-llama/Meta-Llama-3-8B-Instruct** | **Nexusflow/Starling-LM-7B-beta** | **gpt-3.5-turbo** | **lightblue/suzume-llama-3-8B-multilingual** | **lightblue/suzume-llama-3-8B-multilingual-orpo-borda-full** | **lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top75** | **lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half** | **lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top25** |
88
- |-----------------------|-----------------------------------------|-----------------------------------|-------------------|----------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|
89
- | **Chinese 🇨🇳** | NaN | 6.97 | 7.55 | 7.11 | 7.65 | **7.77** | 7.74 | 7.44 |
90
- | **English 🇺🇸** | 7.98 | 7.92 | **8.26** | 7.73 | 7.98 | 7.94 | 7.98 | 8.22 |
91
- | **French 🇫🇷** | NaN | 7.29 | 7.74 | 7.66 | **7.84** | 7.46 | 7.78 | 7.81 |
92
- | **German 🇩🇪** | NaN | 6.99 | 7.68 | 7.26 | 7.28 | 7.64 | 7.7 | **7.71** |
93
- | **Japanese 🇯🇵** | NaN | 6.22 | **7.84** | 6.56 | 7.2 | 7.12 | 7.34 | 7.04 |
94
- | **Russian 🇷🇺** | NaN | 8.28 | 7.94 | 8.19 | 8.3 | 8.74 | **8.94** | 8.81 |
95
-
96
- We can see noticable improvement on most languages compared to the base model. We also find that our ORPO models achieve the highest score out of all the models we evaluated for a number of languages.
97
-
98
- # Training data
99
-
100
- We trained this model using the [lightblue/mitsu_full_borda](https://huggingface.co/datasets/lightblue/mitsu_full_borda) dataset.
101
-
102
- # Training configuration
103
-
104
-
105
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
106
- should probably proofread and complete it, then remove this comment. -->
107
-
108
- [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
109
- <details><summary>See axolotl config</summary>
110
-
111
- axolotl version: `0.4.0`
112
- ```yaml
113
- base_model: lightblue/suzume-llama-3-8B-multilingual
114
- model_type: LlamaForCausalLM
115
- tokenizer_type: AutoTokenizer # PreTrainedTokenizerFast
116
-
117
- load_in_8bit: false
118
- load_in_4bit: false
119
- strict: false
120
-
121
- rl: orpo
122
- orpo_alpha: 0.1
123
- remove_unused_columns: false
124
-
125
- chat_template: chatml
126
  datasets:
127
- - path: lightblue/mitsu_top25_borda
128
- type: orpo.chat_template
129
- conversation: llama-3
130
- dataset_prepared_path: /workspace/llm_training/axolotl/llama3-multilingual-orpo/prepared_mitsu_top25_borda
131
- val_set_size: 0.02
132
- output_dir: /workspace/llm_training/axolotl/llama3-multilingual-orpo/output_mitsu_top25_borda
133
-
134
- sequence_len: 8192
135
- sample_packing: false
136
- pad_to_sequence_len: true
137
-
138
- use_wandb: true
139
- wandb_project: axolotl
140
- wandb_entity: peterd
141
- wandb_name: mitsu_top25_borda
142
-
143
- gradient_accumulation_steps: 8
144
- micro_batch_size: 1
145
- num_epochs: 1
146
- optimizer: paged_adamw_8bit
147
- lr_scheduler: cosine
148
- learning_rate: 8e-6
149
-
150
- train_on_inputs: false
151
- group_by_length: false
152
- bf16: auto
153
- fp16:
154
- tf32: false
155
-
156
- gradient_checkpointing: true
157
- gradient_checkpointing_kwargs:
158
- use_reentrant: false
159
- early_stopping_patience:
160
- resume_from_checkpoint:
161
- logging_steps: 1
162
- xformers_attention:
163
- flash_attention: true
164
-
165
- warmup_steps: 10
166
- evals_per_epoch: 20
167
- eval_table_size:
168
- saves_per_epoch: 1
169
- debug:
170
- deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json
171
- weight_decay: 0.0
172
- special_tokens:
173
- pad_token: <|end_of_text|>
174
- ```
175
-
176
- </details><br>
177
-
178
- # workspace/llm_training/axolotl/llama3-multilingual-orpo/output_mitsu_top25_borda
179
-
180
- This model is a fine-tuned version of [lightblue/suzume-llama-3-8B-multilingual](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual) on the None dataset.
181
- It achieves the following results on the evaluation set:
182
- - Loss: 0.0818
183
-
184
- ## Model description
185
-
186
- More information needed
187
-
188
- ## Intended uses & limitations
189
-
190
- More information needed
191
-
192
- ## Training and evaluation data
193
-
194
- More information needed
195
-
196
- ## Training procedure
197
-
198
- ### Training hyperparameters
199
-
200
- The following hyperparameters were used during training:
201
- - learning_rate: 8e-06
202
- - train_batch_size: 1
203
- - eval_batch_size: 1
204
- - seed: 42
205
- - distributed_type: multi-GPU
206
- - num_devices: 4
207
- - gradient_accumulation_steps: 8
208
- - total_train_batch_size: 32
209
- - total_eval_batch_size: 4
210
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
211
- - lr_scheduler_type: cosine
212
- - lr_scheduler_warmup_steps: 10
213
- - num_epochs: 1
214
-
215
- ### Training results
216
-
217
- | Training Loss | Epoch | Step | Validation Loss |
218
- |:-------------:|:-----:|:----:|:---------------:|
219
- | 7.6328 | 0.05 | 1 | 7.7812 |
220
- | 7.7158 | 0.1 | 2 | 7.2589 |
221
- | 7.2588 | 0.15 | 3 | 4.0580 |
222
- | 4.0068 | 0.19 | 4 | 2.4598 |
223
- | 2.4438 | 0.24 | 5 | 0.6504 |
224
- | 0.6586 | 0.29 | 6 | 0.1129 |
225
- | 0.1235 | 0.34 | 7 | 0.1066 |
226
- | 0.1273 | 0.39 | 8 | 0.1041 |
227
- | 0.1076 | 0.44 | 9 | 0.0987 |
228
- | 0.1009 | 0.48 | 10 | 0.0940 |
229
- | 0.1172 | 0.53 | 11 | 0.0885 |
230
- | 0.1016 | 0.58 | 12 | 0.0867 |
231
- | 0.1088 | 0.63 | 13 | 0.0859 |
232
- | 0.095 | 0.68 | 14 | 0.0846 |
233
- | 0.1101 | 0.73 | 15 | 0.0839 |
234
- | 0.0969 | 0.78 | 16 | 0.0832 |
235
- | 0.0864 | 0.82 | 17 | 0.0825 |
236
- | 0.0918 | 0.87 | 18 | 0.0821 |
237
- | 0.0927 | 0.92 | 19 | 0.0819 |
238
- | 0.0967 | 0.97 | 20 | 0.0818 |
239
-
240
-
241
- ### Framework versions
242
-
243
- - Transformers 4.38.2
244
- - Pytorch 2.2.1+cu121
245
- - Datasets 2.18.0
246
- - Tokenizers 0.15.0
247
-
248
- # How to cite
249
-
250
- ```tex
251
- @article{devine2024sure,
252
- title={Are You Sure? Rank Them Again: Repeated Ranking For Better Preference Datasets},
253
- author={Devine, Peter},
254
- journal={arXiv preprint arXiv:2405.18952},
255
- year={2024}
256
- }
257
  ```
258
-
259
- # Developer
260
-
261
- Peter Devine - ([ptrdvn](https://huggingface.co/ptrdvn))
262
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ name: suzume-llama-3-8B-multilingual-orpo-borda-top25
3
  license: cc-by-nc-4.0
4
  tags:
5
+ - lightblue
6
+ - multilingual
7
+ - text-generation
8
+ - text2text-generation
9
+ - natural language
10
+ - translate
11
+ - orpo
12
+ - Meta
13
+ - Llama
14
+ - RichardErkhov
15
+ type:
16
+ - 8GB
17
+ - llm
18
+ - chat
19
+ - multilingual
20
+ - subsume
21
+ - llama 3
22
+ config:
23
+ - ctx=8192
24
+ - 5bit
25
+ - temp=0
26
+ resolutions:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  datasets:
28
+ - lightblue/mitsu_full_borda
29
+ - lightblue/tagengo-gpt4
30
+ - megagonlabs/instruction_ja
31
+ - openchat/openchat_sharegpt4_dataset
32
+ language:
33
+ - zh
34
+ - fr
35
+ - de
36
+ - jp
37
+ - ru
38
+ - en
39
+ size: 5732987200
40
+ use:
41
+ shortcomings:
42
+ sources:
43
+ - https://arxiv.org/abs/2405.12612
44
+ - https://arxiv.org/abs/2405.18952
45
+ funded_by:
46
+ train_hardware: 4 x A100 (80GB)
47
+ pipeline_tag: text-generation
48
+ examples: "Bonjour!"
49
+ ---
50
+ [repo_clone_081924](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
  ```
52
+ name: suzume-llama-3-8B-multilingual-orpo-borda-top25
53
+ license: cc-by-nc-4.0
54
+ tags:
55
+ - lightblue
56
+ - multilingual
57
+ - text-generation
58
+ - text2text-generation
59
+ - natural language
60
+ - translate
61
+ - orpo
62
+ - Meta
63
+ - Llama
64
+ - RichardErkhov
65
+ type:
66
+ - 8GB
67
+ - llm
68
+ - chat
69
+ - multilingual
70
+ - subsume
71
+ - llama 3
72
+ config:
73
+ - ctx=8192
74
+ - 5bit
75
+ - temp=0
76
+ resolutions:
77
+ datasets:
78
+ - lightblue/mitsu_full_borda
79
+ - lightblue/tagengo-gpt4
80
+ - megagonlabs/instruction_ja
81
+ - openchat/openchat_sharegpt4_dataset
82
+ language:
83
+ - zh
84
+ - fr
85
+ - de
86
+ - jp
87
+ - ru
88
+ - en
89
+ size: 5732987200
90
+ use:
91
+ shortcomings:
92
+ sources:
93
+ - https://arxiv.org/abs/2405.12612
94
+ - https://arxiv.org/abs/2405.18952
95
+ funded_by:
96
+ train_hardware: 4 x A100 (80GB)
97
+ pipeline_tag: text-generation
98
+ examples: "Bonjour!"
99
+ ```