danorel commited on
Commit
0732fb4
·
1 Parent(s): 76f60d3

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 233.44 +/- 40.37
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f24a201d6c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f24a201d750>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f24a201d7e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f24a201d870>", "_build": "<function ActorCriticPolicy._build at 0x7f24a201d900>", "forward": "<function ActorCriticPolicy.forward at 0x7f24a201d990>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f24a201da20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f24a201dab0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f24a201db40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f24a201dbd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f24a201dc60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f24a201dcf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2449d566c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684094777023066486, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAcm7yfzLM/1YAgv8As870OZIQ8SnaLPQAAAAAAAAAAjTOQPdezc7nbEIs70wEGtg4vS7vW/aS6AAAAAAAAAACmYMS9ezCXutr7uzpSlKq4x5rsOsAnrrcAAIA/AACAP7PJSL0Z6mQ+FiEFPtfXhL4xEjA9v0ElvAAAAAAAAAAAM6sTPDehrj4CVuu8F6lqvtoNQjsy0uq7AAAAAAAAAADNxvM9d7EpPzoEETp/ppS+nuSwPZ3jxroAAAAAAAAAAJW9hL69i+g+sov2PWPXq75ac5e9cDneOwAAAAAAAAAAJvaovUCFmT5FGWq8XrJ7vlbHk7w2Fik8AAAAAAAAAABA+OG9cXUPPtPyxD09b0++QwaXO+YX+zsAAAAAAAAAAM2Zo73qUSM/7eqMvX8C076hjCC9kw1bvAAAAAAAAAAAAAvjvLq6rj/9ory+TNu9vqZiz7uDxv+9AAAAAAAAAAAAfy29rIA/Ph7e572exYK+K6rhvJv/BL0AAAAAAAAAABq/K77DyXw/5VPdvjDN/L6H7Tm+qNGsvQAAAAAAAAAAE2Qvvq4KnbzLMuW7V3aGukIdDT541lQ7AACAPwAAgD9Njpm9SJujur3nO7a++Ci2DXOWuTO3kDUAAIA/AACAP5rZ3zxHmKI/YYIrPakMA79QhGM9tbnmuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVEwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHA8p7ojfN2MAWyUTQgBjAF0lEdAm3gPCAMDwHV9lChoBkdAcLLe40/GEWgHTTMBaAhHQJt4kO09hZ11fZQoaAZHQHHyel41P31oB00AAWgIR0CbeNtelbeNdX2UKGgGR0BuntZPl+3IaAdNAAFoCEdAm3kx7iQ1aXV9lChoBkdAcV3OOKfnOmgHS+doCEdAm3svrKNhmXV9lChoBkdAYt7AAQxvemgHTegDaAhHQJt7S9wm3OR1fZQoaAZHQGyZSC4BmwtoB0vpaAhHQJt7kAggX/J1fZQoaAZHQG//zoEB8x9oB0v0aAhHQJt7rRu0kW11fZQoaAZHQG8oy5I6KcdoB0vsaAhHQJuB+5sj3VV1fZQoaAZHQHC2K6STyJ9oB00LAWgIR0Cbgjmce8wpdX2UKGgGR0Bv2LoIOYplaAdL9GgIR0Cbgk/c32mIdX2UKGgGR0Bv5p8twrDqaAdL2mgIR0CbgycbiqACdX2UKGgGR0BwWupqASWaaAdL5WgIR0Cbg0kOI68ydX2UKGgGR0ByWxmrbQC0aAdNIQFoCEdAm4P4crAgxXV9lChoBkdAccg4yGi5/mgHTQQBaAhHQJuFCfzz3AV1fZQoaAZHQG6Ms9bHIZJoB00PAWgIR0Cbhbj3VTaTdX2UKGgGR0BuJv7UG3WnaAdL5mgIR0CbheEuQIUrdX2UKGgGR0BuxyV4X40uaAdL8mgIR0Cbhf8sMAmzdX2UKGgGR0BkyysEJSiuaAdN6ANoCEdAm4YhSxZ+yHV9lChoBkdAbSr01ZTya2gHTQIBaAhHQJuGyrMkhRt1fZQoaAZHQHDfRrzoUztoB0vpaAhHQJuLU+5e7cx1fZQoaAZHQHB1u+mFajhoB0vuaAhHQJuLVQqI7/51fZQoaAZHQHFOcFMZgohoB0vyaAhHQJuM0wEhaDB1fZQoaAZHQD0edCmdiDxoB0vCaAhHQJuOD4zrNW51fZQoaAZHQHC85DeCTU1oB0v+aAhHQJuOT3+MqBp1fZQoaAZHQHLOLRv3rUtoB00tAWgIR0CbjoxbB42TdX2UKGgGR0BiDp/b0voNaAdN6ANoCEdAm48PUBnzx3V9lChoBkdAcdFl0o0ALmgHS+NoCEdAm49MeOn2qXV9lChoBkdAcKJv9cbBGmgHS/5oCEdAm49rX6InB3V9lChoBkdAbuEjbBXS0GgHS/hoCEdAm4/uCf6Gg3V9lChoBkdAcNSBFuvU0GgHTQUBaAhHQJuQPzcynDR1fZQoaAZHQGCZFZX+2mZoB03oA2gIR0CbkbovzvqkdX2UKGgGR0ByIYo9cKPXaAdNHgFoCEdAm5IUD+zdDnV9lChoBkdAb3FtP557gWgHTb4BaAhHQJuUZeVs1sN1fZQoaAZHQG1FuZLIxQBoB0v6aAhHQJuUyxRl6JJ1fZQoaAZHQHFYCM5wOvtoB0vlaAhHQJuWO+/QBxR1fZQoaAZHQG753IdU83doB00DAWgIR0CblllzEJjUdX2UKGgGR0Bu6O6RQrMDaAdL5WgIR0CblngAIY3vdX2UKGgGR0Bkqa59Vmz0aAdN6ANoCEdAm5aXhOxja3V9lChoBkdAbuoMbWEsa2gHS+1oCEdAm5cAZ88cMnV9lChoBkdAb0358jRlYmgHS+RoCEdAm5ca9oN/fHV9lChoBkdAcUWJ3xFy72gHS+hoCEdAm5d3jyWiUXV9lChoBkdAcpoIToMa0mgHS+5oCEdAm5ePlEJBxHV9lChoBkdAcStAqur6tWgHTQUBaAhHQJuYzvDxb0R1fZQoaAZHQHMAbExZdOZoB0v/aAhHQJuY6X5WRzR1fZQoaAZHQG1UESdvsJJoB00OAWgIR0CbmyLzf779dX2UKGgGR0By9V5dGAkLaAdNIgFoCEdAm5tzpPhybXV9lChoBkdAcnGAJswcpGgHS+NoCEdAm5wAjUutfXV9lChoBkdAbpEqSX+l02gHS+5oCEdAm5y/i1iON3V9lChoBkdANCaJ66asqGgHS9NoCEdAm51WDxsl9nV9lChoBkdAcMpL9deIEmgHS99oCEdAm52kOAiFCnV9lChoBkdAcp9ScLBsRGgHTQMCaAhHQJudrWXkYGd1fZQoaAZHQG0pNYB/7SBoB0v7aAhHQJuea/ag2611fZQoaAZHQG0uL+YMOPNoB0vwaAhHQJuesm1IAfd1fZQoaAZHQG5wd5yEL6VoB0vmaAhHQJue/t4RmK91fZQoaAZHQG/7u0svqTtoB00AAWgIR0Cbn045cTrWdX2UKGgGR0BvtutQsPJ8aAdNCgFoCEdAm5/6jN6gNHV9lChoBkdAbc7Q40dilWgHS+xoCEdAm6B9uHerMnV9lChoBkdAYXWtnwob42gHTegDaAhHQJug9FKCg9N1fZQoaAZHQEZX3yI55qxoB0vCaAhHQJuiv8Muvll1fZQoaAZHQHGfWHk92X9oB00HAWgIR0Cbo3foRqXXdX2UKGgGR0ByiGdTYNAkaAdL/WgIR0Cbo/u1ndwedX2UKGgGR0BxHvnbItDlaAdNGgFoCEdAm6Rg/cFhX3V9lChoBkdAbwOntv4ub2gHS+toCEdAm6S2RFI/aHV9lChoBkdAcOch6Skj5mgHS+VoCEdAm6YHYQJ5V3V9lChoBkdAcg7bzshPkGgHTQsBaAhHQJumN2gWac91fZQoaAZHQHHTiuMdcSpoB03oAWgIR0CbpkaMaS9vdX2UKGgGR0BwgjGhmGucaAdL7GgIR0CbpsrDIikgdX2UKGgGR0Bw2Ghdt2s8aAdNGQFoCEdAm6gezMRpUXV9lChoBkdAcMuW/ag262gHTQUBaAhHQJuos9QoCuF1fZQoaAZHQG1Sjj7yhBZoB0vpaAhHQJuo4Gmk30h1fZQoaAZHQHCTHkT6BRRoB0v7aAhHQJuo/wG4ZuR1fZQoaAZHQHIEQKrq+rVoB01PAWgIR0Cbqapjtoi+dX2UKGgGR0BwDSW5Yoy9aAdL92gIR0Cbq/VxCIDYdX2UKGgGR0Bxq2fL9uP4aAdL9mgIR0CbrjPdVNpNdX2UKGgGR0ByzALQXyiFaAdNJgFoCEdAm68pO8Cgb3V9lChoBkdAcadDDTBqK2gHTRgBaAhHQJuvSPsAvL51fZQoaAZHQHDKbY9Pk7xoB00HAWgIR0Cbr4FB6a9cdX2UKGgGR0BtmC0F8ohIaAdL5GgIR0Cbr9EUj9n9dX2UKGgGR0BwdHhrFfiQaAdNAgFoCEdAm7DvJRwZO3V9lChoBkdAcomhrWRRuWgHTQMBaAhHQJuxYa3qiXZ1fZQoaAZHQHEEOo5xR2toB0vnaAhHQJuym7xusLh1fZQoaAZHQHLURPO6d2BoB00tAWgIR0CbtF+pwS8KdX2UKGgGR0BxTTriVB2PaAdNBQFoCEdAm7TPSYw7DHV9lChoBkdAcVutlI3BHmgHTQIBaAhHQJu03qv/zat1fZQoaAZHQHD32KqGUOdoB00QAWgIR0CbtbhegL7XdX2UKGgGR0BxX85S3solaAdNDwFoCEdAm7Z5BomG/XV9lChoBkdAcR/KNQ0oB2gHS/ZoCEdAm7fjGLk0anV9lChoBkdAb+mYdhiLEWgHS/VoCEdAm7trZrYXf3V9lChoBkdAcNFJemelK2gHS/loCEdAm7uFQ/HHWHV9lChoBkdAcXW4PwuuimgHTRMBaAhHQJu7wvWYnfF1fZQoaAZHQHFkZJf6XSloB00AAWgIR0CbvDAaef7KdX2UKGgGR0Bxlo9W6shgaAdNEwFoCEdAm7yUNSZSenV9lChoBkdAbhbSPU8V6GgHS+1oCEdAm713yVfNRnV9lChoBkdAcO+zNUwSJ2gHTQ8BaAhHQJu9eMrEtNB1fZQoaAZHQHLCj7l7tzFoB00fAWgIR0CbvjwyIpH7dX2UKGgGR0BhSzGaQV9GaAdN6ANoCEdAm798yBTXKHV9lChoBkdAcfwPi1iON2gHS/RoCEdAm7+wq7ROUXV9lChoBkdAcZWsyzollmgHTSABaAhHQJvAffbblBB1fZQoaAZHQHI52NWEK3NoB00jAWgIR0CbwKbLlmvodWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80792c782c6042556d0a644c3d868a781cec330fb22219f34fdeaf020298c93c
3
+ size 146690
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f24a201d6c0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f24a201d750>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f24a201d7e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f24a201d870>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f24a201d900>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f24a201d990>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f24a201da20>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f24a201dab0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f24a201db40>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f24a201dbd0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f24a201dc60>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f24a201dcf0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f2449d566c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1684094777023066486,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAcm7yfzLM/1YAgv8As870OZIQ8SnaLPQAAAAAAAAAAjTOQPdezc7nbEIs70wEGtg4vS7vW/aS6AAAAAAAAAACmYMS9ezCXutr7uzpSlKq4x5rsOsAnrrcAAIA/AACAP7PJSL0Z6mQ+FiEFPtfXhL4xEjA9v0ElvAAAAAAAAAAAM6sTPDehrj4CVuu8F6lqvtoNQjsy0uq7AAAAAAAAAADNxvM9d7EpPzoEETp/ppS+nuSwPZ3jxroAAAAAAAAAAJW9hL69i+g+sov2PWPXq75ac5e9cDneOwAAAAAAAAAAJvaovUCFmT5FGWq8XrJ7vlbHk7w2Fik8AAAAAAAAAABA+OG9cXUPPtPyxD09b0++QwaXO+YX+zsAAAAAAAAAAM2Zo73qUSM/7eqMvX8C076hjCC9kw1bvAAAAAAAAAAAAAvjvLq6rj/9ory+TNu9vqZiz7uDxv+9AAAAAAAAAAAAfy29rIA/Ph7e572exYK+K6rhvJv/BL0AAAAAAAAAABq/K77DyXw/5VPdvjDN/L6H7Tm+qNGsvQAAAAAAAAAAE2Qvvq4KnbzLMuW7V3aGukIdDT541lQ7AACAPwAAgD9Njpm9SJujur3nO7a++Ci2DXOWuTO3kDUAAIA/AACAP5rZ3zxHmKI/YYIrPakMA79QhGM9tbnmuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVEwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHA8p7ojfN2MAWyUTQgBjAF0lEdAm3gPCAMDwHV9lChoBkdAcLLe40/GEWgHTTMBaAhHQJt4kO09hZ11fZQoaAZHQHHyel41P31oB00AAWgIR0CbeNtelbeNdX2UKGgGR0BuntZPl+3IaAdNAAFoCEdAm3kx7iQ1aXV9lChoBkdAcV3OOKfnOmgHS+doCEdAm3svrKNhmXV9lChoBkdAYt7AAQxvemgHTegDaAhHQJt7S9wm3OR1fZQoaAZHQGyZSC4BmwtoB0vpaAhHQJt7kAggX/J1fZQoaAZHQG//zoEB8x9oB0v0aAhHQJt7rRu0kW11fZQoaAZHQG8oy5I6KcdoB0vsaAhHQJuB+5sj3VV1fZQoaAZHQHC2K6STyJ9oB00LAWgIR0Cbgjmce8wpdX2UKGgGR0Bv2LoIOYplaAdL9GgIR0Cbgk/c32mIdX2UKGgGR0Bv5p8twrDqaAdL2mgIR0CbgycbiqACdX2UKGgGR0BwWupqASWaaAdL5WgIR0Cbg0kOI68ydX2UKGgGR0ByWxmrbQC0aAdNIQFoCEdAm4P4crAgxXV9lChoBkdAccg4yGi5/mgHTQQBaAhHQJuFCfzz3AV1fZQoaAZHQG6Ms9bHIZJoB00PAWgIR0Cbhbj3VTaTdX2UKGgGR0BuJv7UG3WnaAdL5mgIR0CbheEuQIUrdX2UKGgGR0BuxyV4X40uaAdL8mgIR0Cbhf8sMAmzdX2UKGgGR0BkyysEJSiuaAdN6ANoCEdAm4YhSxZ+yHV9lChoBkdAbSr01ZTya2gHTQIBaAhHQJuGyrMkhRt1fZQoaAZHQHDfRrzoUztoB0vpaAhHQJuLU+5e7cx1fZQoaAZHQHB1u+mFajhoB0vuaAhHQJuLVQqI7/51fZQoaAZHQHFOcFMZgohoB0vyaAhHQJuM0wEhaDB1fZQoaAZHQD0edCmdiDxoB0vCaAhHQJuOD4zrNW51fZQoaAZHQHC85DeCTU1oB0v+aAhHQJuOT3+MqBp1fZQoaAZHQHLOLRv3rUtoB00tAWgIR0CbjoxbB42TdX2UKGgGR0BiDp/b0voNaAdN6ANoCEdAm48PUBnzx3V9lChoBkdAcdFl0o0ALmgHS+NoCEdAm49MeOn2qXV9lChoBkdAcKJv9cbBGmgHS/5oCEdAm49rX6InB3V9lChoBkdAbuEjbBXS0GgHS/hoCEdAm4/uCf6Gg3V9lChoBkdAcNSBFuvU0GgHTQUBaAhHQJuQPzcynDR1fZQoaAZHQGCZFZX+2mZoB03oA2gIR0CbkbovzvqkdX2UKGgGR0ByIYo9cKPXaAdNHgFoCEdAm5IUD+zdDnV9lChoBkdAb3FtP557gWgHTb4BaAhHQJuUZeVs1sN1fZQoaAZHQG1FuZLIxQBoB0v6aAhHQJuUyxRl6JJ1fZQoaAZHQHFYCM5wOvtoB0vlaAhHQJuWO+/QBxR1fZQoaAZHQG753IdU83doB00DAWgIR0CblllzEJjUdX2UKGgGR0Bu6O6RQrMDaAdL5WgIR0CblngAIY3vdX2UKGgGR0Bkqa59Vmz0aAdN6ANoCEdAm5aXhOxja3V9lChoBkdAbuoMbWEsa2gHS+1oCEdAm5cAZ88cMnV9lChoBkdAb0358jRlYmgHS+RoCEdAm5ca9oN/fHV9lChoBkdAcUWJ3xFy72gHS+hoCEdAm5d3jyWiUXV9lChoBkdAcpoIToMa0mgHS+5oCEdAm5ePlEJBxHV9lChoBkdAcStAqur6tWgHTQUBaAhHQJuYzvDxb0R1fZQoaAZHQHMAbExZdOZoB0v/aAhHQJuY6X5WRzR1fZQoaAZHQG1UESdvsJJoB00OAWgIR0CbmyLzf779dX2UKGgGR0By9V5dGAkLaAdNIgFoCEdAm5tzpPhybXV9lChoBkdAcnGAJswcpGgHS+NoCEdAm5wAjUutfXV9lChoBkdAbpEqSX+l02gHS+5oCEdAm5y/i1iON3V9lChoBkdANCaJ66asqGgHS9NoCEdAm51WDxsl9nV9lChoBkdAcMpL9deIEmgHS99oCEdAm52kOAiFCnV9lChoBkdAcp9ScLBsRGgHTQMCaAhHQJudrWXkYGd1fZQoaAZHQG0pNYB/7SBoB0v7aAhHQJuea/ag2611fZQoaAZHQG0uL+YMOPNoB0vwaAhHQJuesm1IAfd1fZQoaAZHQG5wd5yEL6VoB0vmaAhHQJue/t4RmK91fZQoaAZHQG/7u0svqTtoB00AAWgIR0Cbn045cTrWdX2UKGgGR0BvtutQsPJ8aAdNCgFoCEdAm5/6jN6gNHV9lChoBkdAbc7Q40dilWgHS+xoCEdAm6B9uHerMnV9lChoBkdAYXWtnwob42gHTegDaAhHQJug9FKCg9N1fZQoaAZHQEZX3yI55qxoB0vCaAhHQJuiv8Muvll1fZQoaAZHQHGfWHk92X9oB00HAWgIR0Cbo3foRqXXdX2UKGgGR0ByiGdTYNAkaAdL/WgIR0Cbo/u1ndwedX2UKGgGR0BxHvnbItDlaAdNGgFoCEdAm6Rg/cFhX3V9lChoBkdAbwOntv4ub2gHS+toCEdAm6S2RFI/aHV9lChoBkdAcOch6Skj5mgHS+VoCEdAm6YHYQJ5V3V9lChoBkdAcg7bzshPkGgHTQsBaAhHQJumN2gWac91fZQoaAZHQHHTiuMdcSpoB03oAWgIR0CbpkaMaS9vdX2UKGgGR0BwgjGhmGucaAdL7GgIR0CbpsrDIikgdX2UKGgGR0Bw2Ghdt2s8aAdNGQFoCEdAm6gezMRpUXV9lChoBkdAcMuW/ag262gHTQUBaAhHQJuos9QoCuF1fZQoaAZHQG1Sjj7yhBZoB0vpaAhHQJuo4Gmk30h1fZQoaAZHQHCTHkT6BRRoB0v7aAhHQJuo/wG4ZuR1fZQoaAZHQHIEQKrq+rVoB01PAWgIR0Cbqapjtoi+dX2UKGgGR0BwDSW5Yoy9aAdL92gIR0Cbq/VxCIDYdX2UKGgGR0Bxq2fL9uP4aAdL9mgIR0CbrjPdVNpNdX2UKGgGR0ByzALQXyiFaAdNJgFoCEdAm68pO8Cgb3V9lChoBkdAcadDDTBqK2gHTRgBaAhHQJuvSPsAvL51fZQoaAZHQHDKbY9Pk7xoB00HAWgIR0Cbr4FB6a9cdX2UKGgGR0BtmC0F8ohIaAdL5GgIR0Cbr9EUj9n9dX2UKGgGR0BwdHhrFfiQaAdNAgFoCEdAm7DvJRwZO3V9lChoBkdAcomhrWRRuWgHTQMBaAhHQJuxYa3qiXZ1fZQoaAZHQHEEOo5xR2toB0vnaAhHQJuym7xusLh1fZQoaAZHQHLURPO6d2BoB00tAWgIR0CbtF+pwS8KdX2UKGgGR0BxTTriVB2PaAdNBQFoCEdAm7TPSYw7DHV9lChoBkdAcVutlI3BHmgHTQIBaAhHQJu03qv/zat1fZQoaAZHQHD32KqGUOdoB00QAWgIR0CbtbhegL7XdX2UKGgGR0BxX85S3solaAdNDwFoCEdAm7Z5BomG/XV9lChoBkdAcR/KNQ0oB2gHS/ZoCEdAm7fjGLk0anV9lChoBkdAb+mYdhiLEWgHS/VoCEdAm7trZrYXf3V9lChoBkdAcNFJemelK2gHS/loCEdAm7uFQ/HHWHV9lChoBkdAcXW4PwuuimgHTRMBaAhHQJu7wvWYnfF1fZQoaAZHQHFkZJf6XSloB00AAWgIR0CbvDAaef7KdX2UKGgGR0Bxlo9W6shgaAdNEwFoCEdAm7yUNSZSenV9lChoBkdAbhbSPU8V6GgHS+1oCEdAm713yVfNRnV9lChoBkdAcO+zNUwSJ2gHTQ8BaAhHQJu9eMrEtNB1fZQoaAZHQHLCj7l7tzFoB00fAWgIR0CbvjwyIpH7dX2UKGgGR0BhSzGaQV9GaAdN6ANoCEdAm798yBTXKHV9lChoBkdAcfwPi1iON2gHS/RoCEdAm7+wq7ROUXV9lChoBkdAcZWsyzollmgHTSABaAhHQJvAffbblBB1fZQoaAZHQHI52NWEK3NoB00jAWgIR0CbwKbLlmvodWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 310,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c761f3c5039baaadb59d8731ef0635971106e009c7d569b5c164d9f416191412
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8856977c60b0bd440f963d294418c1d75a211c952be7b15c1a15b4d036f2d058
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (179 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 233.43601925358607, "std_reward": 40.372714763850084, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-14T20:35:32.817264"}