File size: 5,228 Bytes
5e07d47
 
 
 
1a0f97c
f4937ec
1a0f97c
 
83630b2
1a0f97c
83630b2
1a0f97c
 
 
 
 
 
 
 
 
 
 
 
 
 
83630b2
 
 
6a8d727
83630b2
 
6a8d727
83630b2
 
 
de00cee
c5a3e9a
83630b2
 
 
1a0f97c
 
 
 
83630b2
 
 
1a0f97c
83630b2
de00cee
83630b2
 
 
 
6a8d727
83630b2
 
 
 
 
1a0f97c
 
 
 
83630b2
 
 
 
 
 
 
 
 
 
c518ce5
83630b2
 
 
 
1a0f97c
 
 
 
 
 
83630b2
 
 
 
 
 
 
 
 
 
 
 
 
 
c518ce5
83630b2
 
 
 
1a0f97c
 
83630b2
 
 
 
 
 
 
 
 
1a0f97c
83630b2
 
1a0f97c
83630b2
 
 
 
 
 
 
 
 
 
6a8d727
c5a3e9a
6a8d727
83630b2
 
 
 
 
1a0f97c
 
 
 
 
 
 
 
 
83630b2
 
 
 
c518ce5
83630b2
 
 
c5a3e9a
 
 
1a0f97c
 
 
c5a3e9a
 
 
 
 
 
 
83630b2
 
 
 
c5a3e9a
83630b2
 
 
c5a3e9a
 
 
 
83630b2
 
6a8d727
c5a3e9a
 
c518ce5
c5a3e9a
 
 
 
6a8d727
83630b2
1a0f97c
c5a3e9a
 
 
 
 
 
 
 
 
1a0f97c
 
 
c5a3e9a
 
 
 
 
 
 
1a0f97c
 
 
c5a3e9a
 
 
1a0f97c
 
c5a3e9a
f4937ec
 
 
 
 
 
 
c518ce5
 
 
c5a3e9a
c518ce5
 
f4937ec
de00cee
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
---
datasets:
- danjacobellis/LSDIR_540
---
# Wavelet Learned Lossy Compression (WaLLoC)

WaLLoC sandwiches a convolutional autoencoder between time-frequency analysis and synthesis transforms using 
CDF 9/7 wavelet filters. The time-frequency transform increases the number of signal channels, but reduces the temporal or spatial resolution, resulting in lower GPU memory consumption and higher throughput. WaLLoC's training procedure is highly simplified compared to other $\beta$-VAEs, VQ-VAEs, and neural codecs, but still offers significant dimensionality reduction and compression. This makes it suitable for dataset storage and compressed-domain learning. It currently supports 2D signals (e.g. grayscale, RGB, or hyperspectral images). Support for 1D and 3D signals is in progress.

## Installation

1. Follow the installation instructions for [torch](https://pytorch.org/get-started/locally/)
2. Install WaLLoC and other dependencies via pip

```pip install walloc PyWavelets pytorch-wavelets```

## Pre-trained checkpoints

Pre-trained checkpoints are available on [Hugging Face](https://huggingface.co/danjacobellis/walloc).

## Training

Access to training code is provided by request via [email.](mailto:[email protected])

## Usage example


```python
import os
import torch
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
from IPython.display import display
from torchvision.transforms import ToPILImage, PILToTensor
from walloc import walloc
from walloc.walloc import latent_to_pil, pil_to_latent
class Args: pass
```

### Load the model from a pre-trained checkpoint

```wget https://hf.co/danjacobellis/walloc/resolve/main/v0.6.3_ext.pth```


```python
device = "cpu"
checkpoint = torch.load("v0.6.3_ext.pth",map_location="cpu")
args = checkpoint['args']
codec = walloc.Walloc(
    channels = args.channels,
    J = args.J,
    N = args.N,
    latent_dim = args.latent_dim,
    latent_bits = 5
)
codec.load_state_dict(checkpoint['model_state_dict'])
codec = codec.to(device)
```

### Load an example image

```wget "https://r0k.us/graphics/kodak/kodak/kodim05.png"```


```python
img = Image.open("kodim05.png")
img
```




    
![png](README_files/README_6_0.png)
    



### Full encoding and decoding pipeline with .forward()

* If `codec.eval()` is called, the latent is rounded to nearest integer.

* If `codec.train()` is called, uniform noise is added instead of rounding.


```python
with torch.no_grad():
    codec.eval()
    x = PILToTensor()(img).to(torch.float)
    x = (x/255 - 0.5).unsqueeze(0).to(device)
    x_hat, _, _ = codec(x)
ToPILImage()(x_hat[0]+0.5)
```




    
![png](README_files/README_8_0.png)
    



### Accessing latents


```python
with torch.no_grad():
    codec.eval()
    X = codec.wavelet_analysis(x,J=codec.J)
    Y = codec.encoder(X)
    X_hat = codec.decoder(Y)
    x_hat = codec.wavelet_synthesis(X_hat,J=codec.J)

print(f"dimensionality reduction: {x.numel()/Y.numel()}×")
```

    dimensionality reduction: 12.0×



```python
Y.unique()
```




    tensor([-15., -14., -13., -12., -11., -10.,  -9.,  -8.,  -7.,  -6.,  -5.,  -4.,
             -3.,  -2.,  -1.,  -0.,   1.,   2.,   3.,   4.,   5.,   6.,   7.,   8.,
              9.,  10.,  11.,  12.,  13.,  14.,  15.])




```python
plt.figure(figsize=(5,3),dpi=150)
plt.hist(
    Y.flatten().numpy(),
    range=(-17.5,17.5),
    bins=35,
    density=True,
    width=0.8);
plt.title("Histogram of latents")
plt.xticks(range(-15,16,5));
```


    
![png](README_files/README_12_0.png)
    


# Lossless compression of latents

### Single channel PNG (L)


```python
Y_pil = latent_to_pil(Y,5,1)
display(Y_pil[0])
Y_pil[0].save('latent.png')
png = [Image.open("latent.png")]
Y_rec = pil_to_latent(png,16,5,1)
assert(Y_rec.equal(Y))
print("compression_ratio: ", x.numel()/os.path.getsize("latent.png"))
```


    
![png](README_files/README_14_0.png)
    


    compression_ratio:  20.307596963280485


### Three channel WebP (RGB)


```python
Y_pil = latent_to_pil(Y[:,:12],5,3)
display(Y_pil[0])
Y_pil[0].save('latent.webp',lossless=True)
webp = [Image.open("latent.webp")]
Y_rec = pil_to_latent(webp,16,5,3)
assert(Y_rec.equal(Y[:,:12]))
print("compression_ratio: ", (12/16)*x.numel()/os.path.getsize("latent.webp"))
```


    
![png](README_files/README_16_0.png)
    


    compression_ratio:  21.436712541190154


### Four channel TIF (CMYK)


```python
Y_pil = latent_to_pil(Y,5,4)
display(Y_pil[0])
Y_pil[0].save('latent.tif',compression="tiff_adobe_deflate")
tif = [Image.open("latent.tif")]
Y_rec = pil_to_latent(tif,16,5,4)
assert(Y_rec.equal(Y))
print("compression_ratio: ", x.numel()/os.path.getsize("latent.png"))
```


    
![jpeg](README_files/README_18_0.jpg)
    


    compression_ratio:  20.307596963280485



```python
!jupyter nbconvert --to markdown README.ipynb
```

    [NbConvertApp] Converting notebook README.ipynb to markdown
    [NbConvertApp] Support files will be in README_files/
    [NbConvertApp] Making directory README_files
    [NbConvertApp] Writing 5002 bytes to README.md



```python
!sed -i 's|!\[png](README_files/\(README_[0-9]*_[0-9]*\.png\))|![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/\1)|g' README.md
```