File size: 59,959 Bytes
613102e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "lawNHLqffR_m"
      },
      "source": [
        "# SCC0633/SCC5908 - Processamento de Linguagem Natural\n",
        "> **Docente:** Thiago Alexandre Salgueiro Pardo \\\n",
        "> **Estagiário PAE:** Germano Antonio Zani Jorge\n",
        "\n",
        "\n",
        "# Integrantes do Grupo: GPTrouxas\n",
        "> André Guarnier De Mitri - 11395579 \\\n",
        "> Daniel Carvalho - 10685702 \\\n",
        "> Fernando - 11795342 \\\n",
        "> Lucas Henrique Sant'Anna - 10748521 \\\n",
        "> Magaly L Fujimoto - 4890582"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "pV6WGoBln8id"
      },
      "source": [
        "# New Section"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "# Abordagem Estatístico\n",
        "A arquitetura da solução estatística/neural envolve duas abordagens que\n",
        "serão descritas neste documento. A primeira abordagem envolve utilizar\n",
        "TF-IDF e Naive Bayes. E a segunda abordagem irá utilizar Word2Vec e um\n",
        "modelo transformers pré-treinado da família BERT, realizando finetuning do\n",
        "modelo.\n",
        "\n",
        "Na primeira abordagem, utilizaremos o TF-IDF, que leva em consideração a\n",
        "frequência de ocorrência dos termos em um corpus e gera uma sequência de\n",
        "vetores que serão fornecidos ao Naive Bayes para classificação da review como\n",
        "positiva ou negativa.\n",
        "\n",
        "\n",
        "Na segunda abordagem, utilizaremos o Word2Vec para vetorizar as reviews.\n",
        "Após dividir em treino e teste, faremos o fine tuning de um modelo do tipo BERT\n",
        "para o nosso problema e dataset específico. Com o BERT adaptado, faremos a\n",
        "classificação de nossos textos, medindo o seu desempenho com F1 score e\n",
        "acurácia.\n",
        "\n",
        "![alt text](../imagens/BERT_TDIDF.png)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "vfP54aryxZBg"
      },
      "source": [
        "\n",
        "## # Etapas da Abordagem Estatística\n",
        "\n",
        "1. **Bibliotecas**: Importamos as bibliotecas necessárias, considerando pandas para manipulação de dados, train_test_split para dividir o conjunto de dados em conjuntos de treinamento e teste, TfidfVectorizer para vetorização de texto usando TF-IDF, MultinomialNB para implementar o classificador Naive Bayes Multinomial e algumas métricas de avaliação.\n",
        "\n",
        "2. **Conjunto de dados**: Carregar o conjunto de dados e armazená-lo em um dataframe usando pandas.\n",
        "\n",
        "3. **Dividir o conjunto de dados**: Usamos `train_test_split` para dividir o DataFrame em conjuntos de treinamento e teste.\n",
        "\n",
        "4. **TF-IDF**: Usamos `TfidfVectorizer` para converter as revisões de texto em vetores numéricos usando a técnica TF-IDF. Em seguida, ajustamos e transformamos tanto o conjunto de treinamento quanto o conjunto de teste.\n",
        "\n",
        "5. **Naive Bayes**: Treinamos um classificador Naive Bayes Multinomial e usamos o modelo treinado para prever os sentimentos no conjunto de teste usando `predict`.\n",
        "\n",
        "6. **Avaliação e Resultados**: Salvamos os resultados em um novo dataframe `results_df` contendo as revisões do conjunto de teste, os sentimentos originais e os sentimentos previstos pelo modelo. Além disso, avaliamos o modelo verificando algumas métricas e a matriz de confusão.\n",
        "\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "TbLraa4UhWDJ"
      },
      "source": [
        "\n",
        "## # Baixando, Carregando os dados e Pré Processamento\n",
        "\n",
        "1. Transformar todos os textos em lowercase \\\\\n",
        "2. Remoção de caracteres especiais \\\\\n",
        "3. Remoção de stop words \\\\\n",
        "4. Lematização (Lemmatization) \\\\\n",
        "5. Tokenização \\\\"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 1,
      "metadata": {
        "id": "bIWmIe0qfTbE"
      },
      "outputs": [],
      "source": [
        "import pandas as pd"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 2,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 206
        },
        "id": "Wf0n2yPdAn4C",
        "outputId": "37eb3c4d-40c1-41a0-9b1a-d93ed6e272f3"
      },
      "outputs": [
        {
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>review</th>\n",
              "      <th>sentiment</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>One of the other reviewers has mentioned that ...</td>\n",
              "      <td>positive</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>A wonderful little production. &lt;br /&gt;&lt;br /&gt;The...</td>\n",
              "      <td>positive</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>I thought this was a wonderful way to spend ti...</td>\n",
              "      <td>positive</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>3</th>\n",
              "      <td>Basically there's a family where a little boy ...</td>\n",
              "      <td>negative</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>4</th>\n",
              "      <td>Petter Mattei's \"Love in the Time of Money\" is...</td>\n",
              "      <td>positive</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>"
            ],
            "text/plain": [
              "                                              review sentiment\n",
              "0  One of the other reviewers has mentioned that ...  positive\n",
              "1  A wonderful little production. <br /><br />The...  positive\n",
              "2  I thought this was a wonderful way to spend ti...  positive\n",
              "3  Basically there's a family where a little boy ...  negative\n",
              "4  Petter Mattei's \"Love in the Time of Money\" is...  positive"
            ]
          },
          "execution_count": 2,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "db = pd.read_csv('../data/imdb_reviews.csv')\n",
        "db.head(5)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 3,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "6PlfPScGMF1_",
        "outputId": "2a0bd4a1-e22a-429d-82a4-5984eeab7b9d"
      },
      "outputs": [
        {
          "data": {
            "text/plain": [
              "sentiment\n",
              "positive    25000\n",
              "negative    25000\n",
              "Name: count, dtype: int64"
            ]
          },
          "execution_count": 3,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "db['sentiment'].value_counts()"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 4,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "Kev0EaSmMa4N",
        "outputId": "eab73a61-ba36-4d72-e4f2-82236f9f2880"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Quantidade de valores faltantes para cada variável do dataset:\n",
            "review       0\n",
            "sentiment    0\n",
            "dtype: int64\n"
          ]
        }
      ],
      "source": [
        "valores_ausentes = db.isnull().sum(axis=0)\n",
        "print('Quantidade de valores faltantes para cada variável do dataset:')\n",
        "print(valores_ausentes)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 5,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 276
        },
        "id": "1AI3rN0KMuUq",
        "outputId": "7ea5c91b-362e-49eb-82a7-6e8535f0e591"
      },
      "outputs": [
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "[nltk_data] Downloading package stopwords to\n",
            "[nltk_data]     C:\\Users\\andre\\AppData\\Roaming\\nltk_data...\n",
            "[nltk_data]   Package stopwords is already up-to-date!\n",
            "[nltk_data] Downloading package wordnet to\n",
            "[nltk_data]     C:\\Users\\andre\\AppData\\Roaming\\nltk_data...\n",
            "[nltk_data]   Package wordnet is already up-to-date!\n"
          ]
        },
        {
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>review</th>\n",
              "      <th>sentiment</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>one reviewer mentioned watching 1 oz episode h...</td>\n",
              "      <td>positive</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>wonderful little production filming technique ...</td>\n",
              "      <td>positive</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>thought wonderful way spend time hot summer we...</td>\n",
              "      <td>positive</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>3</th>\n",
              "      <td>basically family little boy jake think zombie ...</td>\n",
              "      <td>negative</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>4</th>\n",
              "      <td>petter mattei love time money visually stunnin...</td>\n",
              "      <td>positive</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>"
            ],
            "text/plain": [
              "                                              review sentiment\n",
              "0  one reviewer mentioned watching 1 oz episode h...  positive\n",
              "1  wonderful little production filming technique ...  positive\n",
              "2  thought wonderful way spend time hot summer we...  positive\n",
              "3  basically family little boy jake think zombie ...  negative\n",
              "4  petter mattei love time money visually stunnin...  positive"
            ]
          },
          "execution_count": 5,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "import re\n",
        "import nltk\n",
        "from nltk.corpus import stopwords\n",
        "from nltk.stem import PorterStemmer\n",
        "from nltk.stem import WordNetLemmatizer\n",
        "\n",
        "def lowercase_text(text):\n",
        "    return text.lower()\n",
        "\n",
        "def remove_html(text):\n",
        "    return re.sub(r'<[^<]+?>', '', text)\n",
        "\n",
        "def remove_url(text):\n",
        "    return re.sub(r'http[s]?://\\S+|www\\.\\S+', '', text)\n",
        "\n",
        "def remove_punctuations(text):\n",
        "    tokens_list = '!\"#$%&\\'()*+,-./:;<=>?@[\\\\]^_`{|}~'\n",
        "    for char in text:\n",
        "        if char in tokens_list:\n",
        "            text = text.replace(char, ' ')\n",
        "\n",
        "    return text\n",
        "\n",
        "def remove_emojis(text):\n",
        "    emojis = re.compile(\"[\"\n",
        "                        u\"\\U0001F600-\\U0001F64F\"\n",
        "                        u\"\\U0001F300-\\U0001F5FF\"\n",
        "                        u\"\\U0001F680-\\U0001F6FF\"\n",
        "                        u\"\\U0001F1E0-\\U0001F1FF\"\n",
        "                        u\"\\U00002500-\\U00002BEF\"\n",
        "                        u\"\\U00002702-\\U000027B0\"\n",
        "                        u\"\\U00002702-\\U000027B0\"\n",
        "                        u\"\\U000024C2-\\U0001F251\"\n",
        "                        u\"\\U0001f926-\\U0001f937\"\n",
        "                        u\"\\U00010000-\\U0010ffff\"\n",
        "                        u\"\\u2640-\\u2642\"\n",
        "                        u\"\\u2600-\\u2B55\"\n",
        "                        u\"\\u200d\"\n",
        "                        u\"\\u23cf\"\n",
        "                        u\"\\u23e9\"\n",
        "                        u\"\\u231a\"\n",
        "                        u\"\\ufe0f\"\n",
        "                        u\"\\u3030\"\n",
        "                        \"]+\", re.UNICODE)\n",
        "\n",
        "    text = re.sub(emojis, '', text)\n",
        "    return text\n",
        "\n",
        "def remove_stop_words(text):\n",
        "    stop_words = stopwords.words('english')\n",
        "    new_text = ''\n",
        "    for word in text.split():\n",
        "        if word not in stop_words:\n",
        "            new_text += ''.join(f'{word} ')\n",
        "\n",
        "    return new_text.strip()\n",
        "\n",
        "def lem_words(text):\n",
        "    lemma = WordNetLemmatizer()\n",
        "    new_text = ''\n",
        "    for word in text.split():\n",
        "        new_text += ''.join(f'{lemma.lemmatize(word)} ')\n",
        "\n",
        "    return new_text\n",
        "\n",
        "def preprocess_text(text):\n",
        "    text = lowercase_text(text)\n",
        "    text = remove_html(text)\n",
        "    text = remove_url(text)\n",
        "    text = remove_punctuations(text)\n",
        "    text = remove_emojis(text)\n",
        "    text = remove_stop_words(text)\n",
        "    text = lem_words(text)\n",
        "\n",
        "    return text\n",
        "\n",
        "nltk.download('stopwords')\n",
        "nltk.download('wordnet')\n",
        "db['review'] = db['review'].apply(preprocess_text)\n",
        "db.head()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "QgufZpgHnPa4"
      },
      "source": [
        "# **Conjunto de Treino e teste**"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 6,
      "metadata": {
        "id": "s0lJ6Q0tnPka"
      },
      "outputs": [],
      "source": [
        "from sklearn.model_selection import train_test_split\n",
        "\n",
        "X= db['review']\n",
        "y= db['sentiment']\n",
        "\n",
        "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size= 0.2, random_state= 12)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 7,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "nz4erCEJuD4-",
        "outputId": "88d57536-66e7-4d9b-e016-bf40183d4c45"
      },
      "outputs": [
        {
          "data": {
            "text/plain": [
              "35235    disagree people saying lousy horror film good ...\n",
              "36936    husband wife doctor team carole nile nelson mo...\n",
              "46486    like cast pretty much however story sort unfol...\n",
              "27160    movie awful bad bear expend anything word avoi...\n",
              "19490    purchased blood castle dvd ebay buck knowing s...\n",
              "                               ...                        \n",
              "36482    strange thing see film scene work rather weakl...\n",
              "40177    saw cheap dvd release title entity force since...\n",
              "19709    one peculiar oft used romance movie plot one s...\n",
              "38555    nothing positive say meandering nonsense huffi...\n",
              "14155    low moment life bewildered depressed sitting r...\n",
              "Name: review, Length: 40000, dtype: object"
            ]
          },
          "execution_count": 7,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "X_train"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "6LX-6e-QlioJ"
      },
      "source": [
        "# **TD-IDF e Naive Bayes**"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 8,
      "metadata": {
        "id": "gscB9-obNusA"
      },
      "outputs": [],
      "source": [
        "from sklearn.metrics import confusion_matrix,classification_report\n",
        "from sklearn.feature_extraction.text import TfidfVectorizer\n",
        "from sklearn.preprocessing import StandardScaler as encoder\n",
        "from sklearn.metrics import (\n",
        "    accuracy_score,\n",
        "    confusion_matrix,\n",
        "    ConfusionMatrixDisplay,\n",
        "    f1_score,\n",
        ")\n",
        "\n",
        "\n",
        "tfidf = TfidfVectorizer()\n",
        "tfidf_train = tfidf.fit_transform(X_train)\n",
        "tfidf_test = tfidf.transform(X_test)\n",
        "\n",
        "from sklearn.naive_bayes import MultinomialNB\n",
        "\n",
        "naive_bayes = MultinomialNB()\n",
        "\n",
        "naive_bayes.fit(tfidf_train, y_train)\n",
        "y_pred = naive_bayes.predict(tfidf_test)\n",
        "\n",
        "\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 9,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 206
        },
        "id": "RfJ7AHMZvAb8",
        "outputId": "685701e1-b1e8-47fb-9dc5-1bc04dd3894b"
      },
      "outputs": [
        {
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>review</th>\n",
              "      <th>original sentiment</th>\n",
              "      <th>predicted sentiment</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>34622</th>\n",
              "      <td>hard tell noonan marshall trying ape abbott co...</td>\n",
              "      <td>negative</td>\n",
              "      <td>negative</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1163</th>\n",
              "      <td>well start one reviewer said know real treat s...</td>\n",
              "      <td>positive</td>\n",
              "      <td>positive</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>7637</th>\n",
              "      <td>wife kid opinion absolute abc classic seen eve...</td>\n",
              "      <td>positive</td>\n",
              "      <td>positive</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>7045</th>\n",
              "      <td>surprise basic copycat comedy classic nutty pr...</td>\n",
              "      <td>positive</td>\n",
              "      <td>positive</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>43847</th>\n",
              "      <td>josef von sternberg directs magnificent silent...</td>\n",
              "      <td>positive</td>\n",
              "      <td>positive</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>"
            ],
            "text/plain": [
              "                                                  review original sentiment  \\\n",
              "34622  hard tell noonan marshall trying ape abbott co...           negative   \n",
              "1163   well start one reviewer said know real treat s...           positive   \n",
              "7637   wife kid opinion absolute abc classic seen eve...           positive   \n",
              "7045   surprise basic copycat comedy classic nutty pr...           positive   \n",
              "43847  josef von sternberg directs magnificent silent...           positive   \n",
              "\n",
              "      predicted sentiment  \n",
              "34622            negative  \n",
              "1163             positive  \n",
              "7637             positive  \n",
              "7045             positive  \n",
              "43847            positive  "
            ]
          },
          "execution_count": 9,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "# Criando DataFrame com resultados\n",
        "results_df = pd.DataFrame({'review': X_test, 'original sentiment': y_test, 'predicted sentiment': y_pred})\n",
        "results_df.head()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "8Xq2ABXYtsjk"
      },
      "source": [
        "## Avaliação"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 10,
      "metadata": {
        "id": "3lXqDNhSrhsZ"
      },
      "outputs": [],
      "source": [
        "from sklearn.metrics import confusion_matrix, classification_report\n",
        "import seaborn as sns\n",
        "import matplotlib.pyplot as plt\n",
        "\n",
        "def plot_confusion_matrix(y_true, y_pred, labels, model_name):\n",
        "    cm = confusion_matrix(y_true, y_pred, labels=labels)\n",
        "    plt.figure(figsize=(8, 6))\n",
        "    sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=labels, yticklabels=labels)\n",
        "    plt.xlabel('Predicted Labels')\n",
        "    plt.ylabel('True Labels')\n",
        "    plt.title(f'Confusion Matrix {model_name}')\n",
        "    plt.show()\n",
        "\n",
        "# Função para calcular e imprimir as métricas de avaliação\n",
        "def print_evaluation_metrics(y_true, y_pred, model_name):\n",
        "    print(f\"Classification Report {model_name}:\")\n",
        "    print(classification_report(y_true, y_pred))\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 11,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 564
        },
        "id": "ybfb_GKDuqmb",
        "outputId": "3e4c3a98-8962-4ce8-9856-2252f769a1b8"
      },
      "outputs": [
        {
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAAIhCAYAAAD91lq9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABdSklEQVR4nO3deVxUdd//8ffIrsIIKCCGu3JpaporWLmvuV11pamRpmnmFrl126Ztkt6VVpaZmZpR2lVZakZZLmmKO7lEZqWpCa6IgogI5/eHP+duBBVOjDMyr2eP87id7/mecz5nHrdXnz7fZSyGYRgCAAAAiqiUswMAAADAzYlEEgAAAKaQSAIAAMAUEkkAAACYQiIJAAAAU0gkAQAAYAqJJAAAAEwhkQQAAIApJJIAAAAwhUQSuEF27typhx56SNWqVZOvr6/Kli2r22+/XdOmTdOpU6cc+uwdO3aoVatWslqtslgsmjFjRrE/w2KxaPLkycV+3+uZP3++LBaLLBaL1qxZk++8YRiqWbOmLBaLWrdubeoZb7/9tubPn1+ka9asWXPVmMy4/J6+vr76888/851v3bq16tWrZ9dWtWpV23dz+dqaNWtqzJgxOnHiRLHEBcC9eTo7AMAdzJkzR8OHD1dkZKTGjx+vunXrKicnR1u3btU777yjjRs3asmSJQ57/qBBg5SZmalFixYpMDBQVatWLfZnbNy4Ubfcckux37ew/P39NXfu3HzJ4tq1a/X777/L39/f9L3ffvttlS9fXgMHDiz0Nbfffrs2btyounXrmn5uQbKzs/X0009r4cKFherfsmVLvfLKK5KkrKwsbd26VZMnT9YPP/ygrVu3FmtsANwPiSTgYBs3btSjjz6qDh066IsvvpCPj4/tXIcOHTR27FglJCQ4NIbdu3dryJAh6tKli8Oe0aJFC4fduzD69Omj+Ph4vfXWWwoICLC1z507V1FRUTpz5swNiSMnJ0cWi0UBAQEO+U46d+6sjz76SOPGjdNtt9123f7lypWzi6NNmzY6e/asXnjhBf3666+qXbt2sccIwH0wtA042JQpU2SxWPTuu+/aJZGXeXt7q0ePHrbPeXl5mjZtmv71r3/Jx8dHISEhevDBB3X48GG76y4PZW7ZskV33nmnSpcurerVq+vll19WXl6epP8bDr148aJmzZplG+KUpMmTJ9v+/HeXrzlw4ICtbdWqVWrdurWCg4Pl5+enypUr695779W5c+dsfQoa2t69e7d69uypwMBA+fr6qmHDhlqwYIFdn8tDwB9//LGeeuophYeHKyAgQO3bt9fevXsL9yVL6tu3ryTp448/trWlp6frs88+06BBgwq85rnnnlPz5s0VFBSkgIAA3X777Zo7d64Mw7D1qVq1qvbs2aO1a9favr/LFd3LsS9cuFBjx45VpUqV5OPjo99++y3f0PaJEycUERGh6Oho5eTk2O7/888/q0yZMoqJiSnUe06YMEHBwcF64oknCv3dXMlqtUqSvLy8TN8DACQSScChcnNztWrVKjVu3FgRERGFuubRRx/VE088oQ4dOmjp0qV64YUXlJCQoOjo6Hzz2lJTU9W/f3898MADWrp0qbp06aKJEyfqww8/lCTdfffd2rhxoyTpP//5jzZu3Gj7XFgHDhzQ3XffLW9vb73//vtKSEjQyy+/rDJlyujChQtXvW7v3r2Kjo7Wnj179MYbb+jzzz9X3bp1NXDgQE2bNi1f/yeffFJ//vmn3nvvPb377rvat2+funfvrtzc3ELFGRAQoP/85z96//33bW0ff/yxSpUqpT59+lz13R555BF98skn+vzzz3XPPfdo1KhReuGFF2x9lixZourVq6tRo0a27+/KaQgTJ07UwYMH9c4772jZsmUKCQnJ96zy5ctr0aJF2rJliy0JPHfunO677z5VrlxZ77zzTqHe09/fX08//bS++eYbrVq16rr9DcPQxYsXdfHiRWVkZGj16tWaMWOGWrZsqWrVqhXqmQBwVQYAh0lNTTUkGffff3+h+icnJxuSjOHDh9u1b9q0yZBkPPnkk7a2Vq1aGZKMTZs22fWtW7eu0alTJ7s2ScaIESPs2iZNmmQU9D8B8+bNMyQZ+/fvNwzDMD799FNDkpGUlHTN2CUZkyZNsn2+//77DR8fH+PgwYN2/bp06WKULl3aOH36tGEYhrF69WpDktG1a1e7fp988okhydi4ceM1n3s53i1bttjutXv3bsMwDKNp06bGwIEDDcMwjFtvvdVo1arVVe+Tm5tr5OTkGM8//7wRHBxs5OXl2c5d7drLz7vrrruuem716tV27VOnTjUkGUuWLDEGDBhg+Pn5GTt37rzmO175ntnZ2Ub16tWNJk2a2OJs1aqVceutt9pdU6VKFUNSvqNZs2ZGSkrKdZ8JANdDRRJwIatXr5akfIs6mjVrpjp16uj777+3aw8LC1OzZs3s2ho0aFDgql6zGjZsKG9vbw0dOlQLFizQH3/8UajrVq1apXbt2uWrxA4cOFDnzp3LVxn9+/C+dOk9JBXpXVq1aqUaNWro/fff165du7Rly5arDmtfjrF9+/ayWq3y8PCQl5eXnn32WZ08eVLHjh0r9HPvvffeQvcdP3687r77bvXt21cLFizQm2++qfr16xf6eunSdIgXX3xRW7du1SeffHLNvnfccYe2bNmiLVu26Mcff9TcuXN1/PhxtW3blpXbAP4xEknAgcqXL6/SpUtr//79hep/8uRJSVLFihXznQsPD7edvyw4ODhfPx8fH2VlZZmItmA1atTQd999p5CQEI0YMUI1atRQjRo19Prrr1/zupMnT171PS6f/7sr3+XyfNKivIvFYtFDDz2kDz/8UO+8845q166tO++8s8C+mzdvVseOHSVdWlX/448/asuWLXrqqaeK/NyC3vNaMQ4cOFDnz59XWFhYoedGXun+++/X7bffrqeeespuzuWVrFarmjRpoiZNmig6OlqDBg3SRx99pOTkZL366qumng0Al5FIAg7k4eGhdu3aadu2bfkWyxTkcjKVkpKS79yRI0dUvnz5YovN19dX0qXtZP6uoCrVnXfeqWXLlik9PV2JiYmKiopSbGysFi1adNX7BwcHX/U9JBXru/zdwIEDdeLECb3zzjt66KGHrtpv0aJF8vLy0vLly9W7d29FR0erSZMmpp5Z0KKlq0lJSdGIESPUsGFDnTx5UuPGjTP9zKlTp+r333/Xu+++W6RrL1d7f/rpJ1PPBoDLSCQBB5s4caIMw9CQIUMKXJySk5OjZcuWSZLatm0rSbbFMpdt2bJFycnJateuXbHFdXnl8c6dO+3aL8dSEA8PDzVv3lxvvfWWJGn79u1X7duuXTutWrXKljhe9sEHH6h06dIO2y6oUqVKGj9+vLp3764BAwZctZ/FYpGnp6c8PDxsbVlZWQXuz1hcVd7c3Fz17dtXFotFX3/9teLi4vTmm2/q888/N3W/9u3bq0OHDnr++eeVkZFR6OuSkpIkqcBFQQBQFOwjCThYVFSUZs2apeHDh6tx48Z69NFHdeuttyonJ0c7duzQu+++q3r16ql79+6KjIzU0KFD9eabb6pUqVLq0qWLDhw4oGeeeUYRERF6/PHHiy2url27KigoSIMHD9bzzz8vT09PzZ8/X4cOHbLr984772jVqlW6++67VblyZZ0/f962Mrp9+/ZXvf+kSZO0fPlytWnTRs8++6yCgoIUHx+vr776StOmTbNtQeMIL7/88nX73H333XrttdfUr18/DR06VCdPntQrr7xS4BZN9evX16JFi7R48WJVr15dvr6+RZ7XKF36TtatW6dvv/1WYWFhGjt2rNauXavBgwerUaNGplZRT506VY0bN9axY8d066235jt/+vRpJSYmSrr0Hy3JycmaMmWKfHx8NGLEiCI/DwD+jkQSuAGGDBmiZs2aafr06Zo6dapSU1Pl5eWl2rVrq1+/fho5cqSt76xZs1SjRg3NnTtXb731lqxWqzp37qy4uLgC50SaFRAQoISEBMXGxuqBBx5QuXLl9PDDD6tLly56+OGHbf0aNmyob7/9VpMmTVJqaqrKli2revXqaenSpbY5hgWJjIzUhg0b9OSTT2rEiBHKyspSnTp1NG/evCL9QoyjtG3bVu+//76mTp2q7t27q1KlShoyZIhCQkI0ePBgu77PPfecUlJSNGTIEJ09e1ZVqlSx22ezMFauXKm4uDg988wzdpXl+fPnq1GjRurTp4/Wr18vb2/vIt23UaNG6tu3rz766KMCz//444+KioqSdKmiXKlSJTVr1kxPPfWUGjZsWKRnAcCVLIbxt513AQAAgEJijiQAAABMIZEEAACAKSSSAAAAMIVEEgAAAKaQSAIAAMAUEkkAAACYQiIJAAAAU0rkhuR+zcc7OwQADnJi3TRnhwDAQcp4F/5364ubX6OR1+9kUtaOmQ67t7NRkQQAAIApJbIiCQAAUCQWamtmkEgCAABYnDesfjMj/QYAAIApVCQBAAAY2jaFbw0AAACmUJEEAABgjqQpVCQBAABgChVJAAAA5kiawrcGAAAAU6hIAgAAMEfSFBJJAAAAhrZN4VsDAACAKVQkAQAAGNo2hYokAAAATKEiCQAAwBxJU/jWAAAAYAoVSQAAAOZImkJFEgAAAKZQkQQAAGCOpCkkkgAAAAxtm0L6DQAAAFOoSAIAADC0bQrfGgAAAEyhIgkAAEBF0hS+NQAAAJhCRRIAAKAUq7bNoCIJAAAAU6hIAgAAMEfSFBJJAAAANiQ3hfQbAAAAplCRBAAAYGjbFL41AAAAmEJFEgAAgDmSplCRBAAAgClUJAEAAJgjaQrfGgAAAEyhIgkAAMAcSVNIJAEAABjaNoVvDQAAAKaQSAIAAFgsjjv+gbi4OFksFsXGxtraDMPQ5MmTFR4eLj8/P7Vu3Vp79uyxuy47O1ujRo1S+fLlVaZMGfXo0UOHDx+265OWlqaYmBhZrVZZrVbFxMTo9OnTRYqPRBIAAMAFbdmyRe+++64aNGhg1z5t2jS99tprmjlzprZs2aKwsDB16NBBZ8+etfWJjY3VkiVLtGjRIq1fv14ZGRnq1q2bcnNzbX369eunpKQkJSQkKCEhQUlJSYqJiSlSjCSSAAAAllKOO0zIyMhQ//79NWfOHAUGBtraDcPQjBkz9NRTT+mee+5RvXr1tGDBAp07d04fffSRJCk9PV1z587Vq6++qvbt26tRo0b68MMPtWvXLn333XeSpOTkZCUkJOi9995TVFSUoqKiNGfOHC1fvlx79+4tdJwkkgAAAA6UnZ2tM2fO2B3Z2dnXvGbEiBG6++671b59e7v2/fv3KzU1VR07drS1+fj4qFWrVtqwYYMkadu2bcrJybHrEx4ernr16tn6bNy4UVarVc2bN7f1adGihaxWq61PYZBIAgAAOHCOZFxcnG0e4uUjLi7uqqEsWrRI27dvL7BPamqqJCk0NNSuPTQ01HYuNTVV3t7edpXMgvqEhITku39ISIitT2Gw/Q8AAIADTZw4UWPGjLFr8/HxKbDvoUOH9Nhjj+nbb7+Vr6/vVe9puWIRj2EY+dqudGWfgvoX5j5/R0USAADAgXMkfXx8FBAQYHdcLZHctm2bjh07psaNG8vT01Oenp5au3at3njjDXl6etoqkVdWDY8dO2Y7FxYWpgsXLigtLe2afY4ePZrv+cePH89X7bwWEkkAAAAXWWzTrl077dq1S0lJSbajSZMm6t+/v5KSklS9enWFhYVp5cqVtmsuXLigtWvXKjo6WpLUuHFjeXl52fVJSUnR7t27bX2ioqKUnp6uzZs32/ps2rRJ6enptj6FwdA2AACAi/D391e9evXs2sqUKaPg4GBbe2xsrKZMmaJatWqpVq1amjJlikqXLq1+/fpJkqxWqwYPHqyxY8cqODhYQUFBGjdunOrXr29bvFOnTh117txZQ4YM0ezZsyVJQ4cOVbdu3RQZGVnoeEkkAQAAbqLf2p4wYYKysrI0fPhwpaWlqXnz5vr222/l7+9v6zN9+nR5enqqd+/eysrKUrt27TR//nx5eHjY+sTHx2v06NG21d09evTQzJkzixSLxTAMo3hey3X4NR/v7BAAOMiJddOcHQIABynj7bxkzq/HLIfdO2vpow67t7NRkQQAADC5cbi741sDAACAKVQkAQAAbqI5kq6EiiQAAABMoSIJAADAHElTSCQBAAAY2jaF9BsAAACmUJEEAABuz0JF0hQqkgAAADCFiiQAAHB7VCTNoSIJAAAAU6hIAgAAUJA0hYokAAAATKEiCQAA3B5zJM0hkQQAAG6PRNIchrYBAABgChVJAADg9qhImkNFEgAAAKZQkQQAAG6PiqQ5VCQBAABgChVJAAAACpKmUJEEAACAKVQkAQCA22OOpDlUJAEAAGAKFUkAAOD2qEiaQyIJAADcHomkOQxtAwAAwBQqkgAAwO1RkTSHiiQAAABMoSIJAABAQdIUKpIAAAAwhYokAABwe8yRNIeKJAAAAEyhIgkAANweFUlzSCQBAIDbI5E0h6FtAAAAmEJFEgAAgIKkKVQkAQAAYAoVSQAA4PaYI2kOFUkAAACY4jKJ5Lp16/TAAw8oKipKf/31lyRp4cKFWr9+vZMjAwAAJZ3FYnHYUZK5RCL52WefqVOnTvLz89OOHTuUnZ0tSTp79qymTJni5OgAAABQEJdIJF988UW98847mjNnjry8vGzt0dHR2r59uxMjAwAA7oCKpDkusdhm7969uuuuu/K1BwQE6PTp0zc+IAAA4FZKesLnKC5RkaxYsaJ+++23fO3r169X9erVnRARAAAArsclEslHHnlEjz32mDZt2iSLxaIjR44oPj5e48aN0/Dhw50dHgAAKOksDjxKMJcY2p4wYYLS09PVpk0bnT9/XnfddZd8fHw0btw4jRw50tnhAQAAoAAukUhK0ksvvaSnnnpKP//8s/Ly8lS3bl2VLVvW2WEBAAA3wBxJc1xiaHvBggXKzMxU6dKl1aRJEzVr1owkEgAAwMW5RCI5btw4hYSE6P7779fy5ct18eJFZ4cEAADcCNv/mOMSiWRKSooWL14sDw8P3X///apYsaKGDx+uDRs2ODs0AAAAXIVLJJKenp7q1q2b4uPjdezYMc2YMUN//vmn2rRpoxo1ajg7PAAAUMK5SkVy1qxZatCggQICAhQQEKCoqCh9/fXXtvMDBw7Md/8WLVrY3SM7O1ujRo1S+fLlVaZMGfXo0UOHDx+265OWlqaYmBhZrVZZrVbFxMSY2rvbJRLJvytdurQ6deqkLl26qFatWjpw4ICzQwIAACWdi2z/c8stt+jll1/W1q1btXXrVrVt21Y9e/bUnj17bH06d+6slJQU27FixQq7e8TGxmrJkiVatGiR1q9fr4yMDHXr1k25ubm2Pv369VNSUpISEhKUkJCgpKQkxcTEFC1YudCq7XPnzmnJkiWKj4/Xd999p4iICPXt21f//e9/nR0aAADADdG9e3e7zy+99JJmzZqlxMRE3XrrrZIkHx8fhYWFFXh9enq65s6dq4ULF6p9+/aSpA8//FARERH67rvv1KlTJyUnJyshIUGJiYlq3ry5JGnOnDmKiorS3r17FRkZWeh4XSKR7Nu3r5YtW6bSpUvrvvvu05o1axQdHe3ssAAAgJtw5KKY7OxsZWdn27X5+PjIx8fnmtfl5ubqv//9rzIzMxUVFWVrX7NmjUJCQlSuXDm1atVKL730kkJCQiRJ27ZtU05Ojjp27GjrHx4ernr16mnDhg3q1KmTNm7cKKvVaksiJalFixayWq3asGFDkRJJlxjatlgsWrx4sY4cOaK33nqLJBIAAJQYcXFxtrmIl4+4uLir9t+1a5fKli0rHx8fDRs2TEuWLFHdunUlSV26dFF8fLxWrVqlV199VVu2bFHbtm1tiWpqaqq8vb0VGBhod8/Q0FClpqba+lxOPP8uJCTE1qewXKIi+dFHHzk7BAAA4MYcWZGcOHGixowZY9d2rWpkZGSkkpKSdPr0aX322WcaMGCA1q5dq7p166pPnz62fvXq1VOTJk1UpUoVffXVV7rnnnuuek/DMOzesaD3vbJPYTgtkXzjjTc0dOhQ+fr66o033rhm39GjR9+gqAAAAIpXYYax/87b21s1a9aUJDVp0kRbtmzR66+/rtmzZ+frW7FiRVWpUkX79u2TJIWFhenChQtKS0uzq0oeO3bMNuIbFhamo0eP5rvX8ePHFRoaWqR3c1oiOX36dPXv31++vr6aPn36VftZLBYSSTcybkAbvTC8q2YuWqfx05fK06OUJg/rrE7R/1K1SsE6k5GlVVt+0zNvrVDKiTN21zavV0WTH+2sprdWVs7FXO389Yh6Pv6ezmdfVOWKgZo4qL1aN6mp0CB/pZw4o48TtmvqvO+VczH3KtEAKG53d2qrlCNH8rXf16efxj0xUW+/+bp+XLdWh/86rLJly6p5i2iNjh2jCiH/9y+3z/67WAkrluuX5J+VmZmptT9uln9AwI18DZRArrxxuGEY+eZYXnby5EkdOnRIFStWlCQ1btxYXl5eWrlypXr37i3p0n7du3fv1rRp0yRJUVFRSk9P1+bNm9WsWTNJ0qZNm5Senl7k6YVOSyT3799f4J/hvhrXuUWDe7XQzn3/9y+Z0r7eahhZSS+//5127ktRYICf/vfxHvrvKwN1x8D/q2Q3r1dFX74+WK8sWK0xr3yhCxdz1aBWReXlGZKkyCohKlXKopEvf6bfD53QrTXC9NaT/1EZP29NfGP5DX9XwF19+PGnys37v/94+33fPj06dJA6dOqk8+fP65fkn/XwI8NVOzJSZ86c0SvT4hQ7arjiF39mu+b8+fOKbnmnolveqTdff80ZrwE4zJNPPqkuXbooIiJCZ8+e1aJFi7RmzRolJCQoIyNDkydP1r333quKFSvqwIEDevLJJ1W+fHn9+9//liRZrVYNHjxYY8eOVXBwsIKCgjRu3DjVr1/ftoq7Tp066ty5s4YMGWKrcg4dOlTdunUr0kIbyUXmSD7//PMaN26cSpcubdeelZWl//3f/9Wzzz7rpMhwo5Tx89a85/tp+JRP9T8PtbO1n8k8r26j59j1HfPKF1o//zFFhJbToaOnJUnTHu+utz/5Ua98sNrW7/dDJ2x/Xpm4VysT99o+HzhySrXj12rIPVEkksANFBgUZPd53tw5uiWisho3aSaLxaJZc963O//ExKcV0/c+paQcUcWK4ZKk/jEDJElbt2y6MUHDLbhKRfLo0aOKiYlRSkqKrFarGjRooISEBHXo0EFZWVnatWuXPvjgA50+fVoVK1ZUmzZttHjxYvn7+9vuMX36dHl6eqp3797KyspSu3btNH/+fHl4eNj6xMfHa/To0bbV3T169NDMmTOLHK9LJJLPPfechg0bli+RPHfunJ577jkSSTcwY/y/lfBjslZv2WeXSBYkoKyf8vLydDojS5JUIbCMmtWrokUJO7R6zghVuyVYvx44psnvJGjDTweufp8yvjp15lxxvgaAIsjJuaCvly9V/wcHXvVf4hlnz8piscjfn6FrOJhr5JGaO3fuVc/5+fnpm2++ue49fH199eabb+rNN9+8ap+goCB9+OGHpmL8O5fY/udqq4R++uknBV3xX69Xys7O1pkzZ+wOI++io0KFA9zX4TY1jKykZ97++rp9fbw99cKILlr8TZLOZl6aL1KtUrAk6akhHfT+l5vU87H3lLT3L62Y+YhqRJQv8D7VKgXr0d4t9d7nicX3IgCKZPX33+vs2bPq0fPfBZ7Pzs7WGzNeVeeu3VS2bNkbHB2AwnBqRTIwMND2O5G1a9e2SyZzc3OVkZGhYcOGXfMecXFxeu655+zaPMKj5HVLS4fEjOJ1S4hV/zump7qPnqPsC9f+DwBPj1Ja+GJ/lbJY9Nj/fm5rL/X///9m7pJELVy+VZL0069H1LpJLQ3o3lTPXpGgViwfoKWvD9bn3+/U/KWbi/mNABTWF0s+VfQdd9otpLksJydHE8ePkWEYmvj0JCdEB3fjKkPbNxunJpIzZsyQYRgaNGiQnnvuOVmtVts5b29vVa1a1W4n94IUtDdTSDv+R+dm0ehftyg0yF8b5j9ma/P09NAdjapp2H+iZb1zovLyDHl6lFL8lBhVCQ9Sl+GzbdVISbbV28n7j9nde++Bo4oILWfXVrF8gBLefkSbdh3UiLjPBMA5jhz5S5sTN+qV6fmH3nJycvQ/4x7XX38d1uy586lGAi7MqYnkgAGXJkxXq1ZN0dHR8vLyKvI9CtqbyVLKJaZ+ohBWb/1Njfu+Ytf27jN9tPfPY3r1g9V2SWSNiPLqPPydfPMa/0xJ05Fj6apdpYJde83KFfTtxl9sn8MrBCjh7WHa8cthDX1hsQzDcNyLAbimpV98rqCgYN1xVyu79stJ5MGDf+rduQtUrlzgVe4AFC8qkuY4LeM6c+aMAv7/vl+NGjVSVlaWsrKyCuwbwP5gJVbGuWz9/If9pqiZWRd0Kv2cfv7jqDw8Sumjlx9Uo8hKumfs+/IoVUqhQZdWpp06c862B+T0+DV6ekhH7dp3RD/9ekQP3N1EkVVC1G/iQkmXKpHfzBqmQ6mnNfGN5apQ7v8qHEdPnb1BbwtAkvLy8rT0iyXq1qOXPD3/719DFy9e1IQxj+mX5J/1+lvvKDcvVydOHJd0aUsTLy9vSdKJE8d18sQJHTp4UJK0b9+vKlOmjMIqVpTVWu6Gvw/gzpyWSAYGBiolJcX2o+PX+qme3Fw2jHZXlUKs6n7XrZKkzR/aT2Ho+Ogsrdv+hyRp5qL18vX20rTYHgoMKK1d+46o2+h3tf+vk5Kkds1rq2ZEBdWMqKDflz9jdx+/5uNvwJsAuGxT4galphxRz3/b/5zbsaOpWrtmlSTp/v/0sjv37vsL1KRpc0nSp58s0ruz3rKde3jgA5KkyS9MUY9eV/+JOOBaKEiaYzGcNL63du1atWzZUp6enlq7du01+7Zq1eqa569EYgCUXCfWTXN2CAAcpIy387K5muOuv3OIWb+90sVh93Y2p1Uk/54cFjVRBAAAKE7MkTTHJfaRTEhI0Pr1622f33rrLTVs2FD9+vVTWlqaEyMDAADuwGJx3FGSuUQiOX78eJ05c2kLl127dmnMmDHq2rWr/vjjj3xb+wAAAMA1uMQ+Ofv371fdunUlSZ999pm6d++uKVOmaPv27eratauTowMAACUdQ9vmuERF0tvbW+fOXdob8LvvvrP9gHhQUJCtUgkAAADX4hIVyTvuuENjxoxRy5YttXnzZi1evFiS9Ouvv+qWW25xcnQAAKCkoyBpjktUJGfOnClPT099+umnmjVrlipVqiRJ+vrrr9W5c2cnRwcAAICCuERFsnLlylq+fHm+9unTpzshGgAA4G5KlaIkaYZLJJKSlJubqy+++ELJycmyWCyqU6eOevbsKQ8PD2eHBgAAgAK4RCL522+/qWvXrvrrr78UGRkpwzD066+/KiIiQl999ZVq1Kjh7BABAEAJxhxJc1xijuTo0aNVo0YNHTp0SNu3b9eOHTt08OBBVatWTaNHj3Z2eAAAoISzWCwOO0oyl6hIrl27VomJiQoKCrK1BQcH6+WXX1bLli2dGBkAAACuxiUSSR8fH509ezZfe0ZGhry9vZ0QEQAAcCclvHDoMC4xtN2tWzcNHTpUmzZtkmEYMgxDiYmJGjZsmHr06OHs8AAAAFAAl0gk33jjDdWoUUNRUVHy9fWVr6+voqOjVbNmTb3++uvODg8AAJRwzJE0xyWGtsuVK6cvv/xSv/32m37++WdJUt26dVWzZk0nRwYAAICrcYlEUpLmzp2r6dOna9++fZKkWrVqKTY2Vg8//LCTIwMAACVdSa8cOopLJJLPPPOMpk+frlGjRikqKkqStHHjRj3++OM6cOCAXnzxRSdHCAAAgCu5RCI5a9YszZkzR3379rW19ejRQw0aNNCoUaNIJAEAgENRkDTHJRLJ3NxcNWnSJF9748aNdfHiRSdEBAAA3AlD2+a4xKrtBx54QLNmzcrX/u6776p///5OiAgAAADX4xIVSenSYptvv/1WLVq0kCQlJibq0KFDevDBBzVmzBhbv9dee81ZIQIAgBKKgqQ5LpFI7t69W7fffrsk6ffff5ckVahQQRUqVNDu3btt/Sg7AwAAuA6XSCRXr17t7BAAAIAbo1hljkvMkQQAAMDNxyUqkgAAAM5EQdIcKpIAAAAwhYokAABwe8yRNIeKJAAAAEyhIgkAANweBUlzSCQBAIDbY2jbHIa2AQAAYAoVSQAA4PYoSJpDRRIAAACmUJEEAABujzmS5lCRBAAAgClUJAEAgNujIGkOFUkAAACYQkUSAAC4PeZImkMiCQAA3B55pDkMbQMAAMAUKpIAAMDtMbRtDhVJAAAAmEJFEgAAuD0qkuZQkQQAAIApJJIAAMDtWSyOO4pi1qxZatCggQICAhQQEKCoqCh9/fXXtvOGYWjy5MkKDw+Xn5+fWrdurT179tjdIzs7W6NGjVL58uVVpkwZ9ejRQ4cPH7brk5aWppiYGFmtVlmtVsXExOj06dNF/t5IJAEAAFzELbfcopdffllbt27V1q1b1bZtW/Xs2dOWLE6bNk2vvfaaZs6cqS1btigsLEwdOnTQ2bNnbfeIjY3VkiVLtGjRIq1fv14ZGRnq1q2bcnNzbX369eunpKQkJSQkKCEhQUlJSYqJiSlyvBbDMIx//tquxa/5eGeHAMBBTqyb5uwQADhIGW/nzVNsPWODw+79zaONlZ2dbdfm4+MjHx+fQl0fFBSk//3f/9WgQYMUHh6u2NhYPfHEE5IuVR9DQ0M1depUPfLII0pPT1eFChW0cOFC9enTR5J05MgRRUREaMWKFerUqZOSk5NVt25dJSYmqnnz5pKkxMRERUVF6ZdfflFkZGSh342KJAAAcHuOHNqOi4uzDSFfPuLi4q4bU25urhYtWqTMzExFRUVp//79Sk1NVceOHW19fHx81KpVK23YcCkR3rZtm3Jycuz6hIeHq169erY+GzdulNVqtSWRktSiRQtZrVZbn8Ji1TYAAIADTZw4UWPGjLFru1Y1cteuXYqKitL58+dVtmxZLVmyRHXr1rUleaGhoXb9Q0ND9eeff0qSUlNT5e3trcDAwHx9UlNTbX1CQkLyPTckJMTWp7BIJAEAgNtz5PY/RRnGlqTIyEglJSXp9OnT+uyzzzRgwACtXbvWdv7KWA3DuG78V/YpqH9h7nMlhrYBAABciLe3t2rWrKkmTZooLi5Ot912m15//XWFhYVJUr6q4bFjx2xVyrCwMF24cEFpaWnX7HP06NF8zz1+/Hi+auf1kEgCAAC35yrb/xTEMAxlZ2erWrVqCgsL08qVK23nLly4oLVr1yo6OlqS1LhxY3l5edn1SUlJ0e7du219oqKilJ6ers2bN9v6bNq0Senp6bY+hcXQNgAAgIt48skn1aVLF0VEROjs2bNatGiR1qxZo4SEBFksFsXGxmrKlCmqVauWatWqpSlTpqh06dLq16+fJMlqtWrw4MEaO3asgoODFRQUpHHjxql+/fpq3769JKlOnTrq3LmzhgwZotmzZ0uShg4dqm7duhVpxbZEIgkAAKBSLvITiUePHlVMTIxSUlJktVrVoEEDJSQkqEOHDpKkCRMmKCsrS8OHD1daWpqaN2+ub7/9Vv7+/rZ7TJ8+XZ6enurdu7eysrLUrl07zZ8/Xx4eHrY+8fHxGj16tG11d48ePTRz5swix8s+kgBuKuwjCZRcztxHssPMRIfde+XIFg67t7NRkQQAAG7PRQqSNx0SSQAA4PYcuf1PScaqbQAAAJhCRRIAALi9UhQkTaEiCQAAAFOoSAIAALfHHElzqEgCAADAFCqSAADA7VGQNIeKJAAAAEyhIgkAANyeRZQkzSCRBAAAbo/tf8xhaBsAAACmUJEEAABuj+1/zKEiCQAAAFOoSAIAALdHQdIcKpIAAAAwpVgqkqdPn1a5cuWK41YAAAA3XClKkqYUuSI5depULV682Pa5d+/eCg4OVqVKlfTTTz8Va3AAAABwXUVOJGfPnq2IiAhJ0sqVK7Vy5Up9/fXX6tKli8aPH1/sAQIAADiaxeK4oyQr8tB2SkqKLZFcvny5evfurY4dO6pq1apq3rx5sQcIAADgaGz/Y06RK5KBgYE6dOiQJCkhIUHt27eXJBmGodzc3OKNDgAAAC6ryBXJe+65R/369VOtWrV08uRJdenSRZKUlJSkmjVrFnuAAAAAjkZB0pwiJ5LTp09X1apVdejQIU2bNk1ly5aVdGnIe/jw4cUeIAAAAFxTkRNJLy8vjRs3Ll97bGxsccQDAABww7H9jzmFSiSXLl1a6Bv26NHDdDAAAAC4eRQqkezVq1ehbmaxWFhwAwAAbjrUI80pVCKZl5fn6DgAAABwk/lHP5F4/vx5+fr6FlcsAAAATsE+kuYUeR/J3NxcvfDCC6pUqZLKli2rP/74Q5L0zDPPaO7cucUeIAAAgKOVsjjuKMmKnEi+9NJLmj9/vqZNmyZvb29be/369fXee+8Va3AAAABwXUVOJD/44AO9++676t+/vzw8PGztDRo00C+//FKswQEAANwIFovFYUdJVuRE8q+//irwF2zy8vKUk5NTLEEBAADA9RU5kbz11lu1bt26fO3//e9/1ahRo2IJCgAA4EayWBx3lGRFXrU9adIkxcTE6K+//lJeXp4+//xz7d27Vx988IGWL1/uiBgBAADggopckezevbsWL16sFStWyGKx6Nlnn1VycrKWLVumDh06OCJGAAAAh2KOpDmm9pHs1KmTOnXqVNyxAAAA4CZiekPyrVu3Kjk5WRaLRXXq1FHjxo2LMy4AAIAbpqTv9+goRU4kDx8+rL59++rHH39UuXLlJEmnT59WdHS0Pv74Y0VERBR3jAAAAA5V0oegHaXIcyQHDRqknJwcJScn69SpUzp16pSSk5NlGIYGDx7siBgBAADggopckVy3bp02bNigyMhIW1tkZKTefPNNtWzZsliDAwAAuBGoR5pT5Ipk5cqVC9x4/OLFi6pUqVKxBAUAAADXV+REctq0aRo1apS2bt0qwzAkXVp489hjj+mVV14p9gABAAAcrZTF4rCjJCvU0HZgYKDdJNTMzEw1b95cnp6XLr948aI8PT01aNAg9erVyyGBAgAAwLUUKpGcMWOGg8MAAABwnhJeOHSYQiWSAwYMcHQcAAAAuMmY3pBckrKysvItvAkICPhHAQEAANxo7CNpTpEX22RmZmrkyJEKCQlR2bJlFRgYaHcAAADAPRQ5kZwwYYJWrVqlt99+Wz4+Pnrvvff03HPPKTw8XB988IEjYgQAAHAoi8VxR0lW5KHtZcuW6YMPPlDr1q01aNAg3XnnnapZs6aqVKmi+Ph49e/f3xFxAgAAOExJ36bHUYpckTx16pSqVasm6dJ8yFOnTkmS7rjjDv3www/FGx0AAABcVpETyerVq+vAgQOSpLp16+qTTz6RdKlSWa5cueKMDQAA4IZgaNucIieSDz30kH766SdJ0sSJE21zJR9//HGNHz++2AMEAABwF3FxcWratKn8/f0VEhKiXr16ae/evXZ9Bg4cKIvFYne0aNHCrk92drZGjRql8uXLq0yZMurRo4cOHz5s1yctLU0xMTGyWq2yWq2KiYnR6dOnixRvkedIPv7447Y/t2nTRr/88ou2bt2qGjVq6Lbbbivq7QAAAJzOVbb/Wbt2rUaMGKGmTZvq4sWLeuqpp9SxY0f9/PPPKlOmjK1f586dNW/ePNtnb29vu/vExsZq2bJlWrRokYKDgzV27Fh169ZN27Ztk4eHhySpX79+Onz4sBISEiRJQ4cOVUxMjJYtW1boeP/RPpKSVLlyZVWuXFmHDh3SoEGD9P777//TWwIAALily0ndZfPmzVNISIi2bdumu+66y9bu4+OjsLCwAu+Rnp6uuXPnauHChWrfvr0k6cMPP1RERIS+++47derUScnJyUpISFBiYqKaN28uSZozZ46ioqK0d+9eRUZGFiref5xIXnbq1CktWLDAJRLJtB//19khAHCQwKYjnR0CAAfJ2jHTac8u8ly/IsjOzlZ2drZdm4+Pj3x8fK57bXp6uiQpKCjIrn3NmjUKCQlRuXLl1KpVK7300ksKCQmRJG3btk05OTnq2LGjrX94eLjq1aunDRs2qFOnTtq4caOsVqstiZSkFi1ayGq1asOGDYVOJB35vQEAALi9uLg42zzEy0dcXNx1rzMMQ2PGjNEdd9yhevXq2dq7dOmi+Ph4rVq1Sq+++qq2bNmitm3b2pLV1NRUeXt75/uhmNDQUKWmptr6XE48/y4kJMTWpzCKrSIJAABws3LkHMmJEydqzJgxdm2FqUaOHDlSO3fu1Pr16+3a+/TpY/tzvXr11KRJE1WpUkVfffWV7rnnnqvezzAMu/cs6J2v7HM9JJIAAMDtlXLgWpvCDmP/3ahRo7R06VL98MMPuuWWW67Zt2LFiqpSpYr27dsnSQoLC9OFCxeUlpZmV5U8duyYoqOjbX2OHj2a717Hjx9XaGhooeMsdCJ5rQxXUpGXiwMAAMCeYRgaNWqUlixZojVr1th+BOZaTp48qUOHDqlixYqSpMaNG8vLy0srV65U7969JUkpKSnavXu3pk2bJkmKiopSenq6Nm/erGbNmkmSNm3apPT0dFuyWRiFTiStVut1zz/44IOFfjAAAICrcGRFsihGjBihjz76SF9++aX8/f1t8xWtVqv8/PyUkZGhyZMn695771XFihV14MABPfnkkypfvrz+/e9/2/oOHjxYY8eOVXBwsIKCgjRu3DjVr1/ftoq7Tp066ty5s4YMGaLZs2dLurT9T7du3Qq90EYqQiL5972KAAAAUPxmzZolSWrdurVd+7x58zRw4EB5eHho165d+uCDD3T69GlVrFhRbdq00eLFi+Xv72/rP336dHl6eqp3797KyspSu3btNH/+fNsekpIUHx+v0aNH21Z39+jRQzNnFm3lvMUwDMPku7qs8xedHQEAR2H7H6Dkcub2P2OX7b1+J5Ne7V74Ct/Nhu1/AAAAYAqrtgEAgNtzlTmSNxsqkgAAADCFiiQAAHB7DtyPvEQzVZFcuHChWrZsqfDwcP3555+SpBkzZujLL78s1uAAAABuhFIWi8OOkqzIieSsWbM0ZswYde3aVadPn1Zubq4kqVy5cpoxY0ZxxwcAAAAXVeRE8s0339ScOXP01FNP2e1F1KRJE+3atatYgwMAALgRSjnwKMmK/H779+9Xo0aN8rX7+PgoMzOzWIICAACA6ytyIlmtWjUlJSXla//6669Vt27d4ogJAADghrJYHHeUZEVetT1+/HiNGDFC58+fl2EY2rx5sz7++GPFxcXpvffec0SMAAAAcEFFTiQfeughXbx4URMmTNC5c+fUr18/VapUSa+//rruv/9+R8QIAADgUCV9dbWjmNpHcsiQIRoyZIhOnDihvLw8hYSEFHdcAAAAcHH/aEPy8uXLF1ccAAAATkNB0pwiJ5LVqlWT5Rrf9h9//PGPAgIAALjR+K1tc4qcSMbGxtp9zsnJ0Y4dO5SQkKDx48cXV1wAAABwcUVOJB977LEC29966y1t3br1HwcEAABwo7HYxpxi23C9S5cu+uyzz4rrdgAAAHBx/2ixzd99+umnCgoKKq7bAQAA3DAUJM0pciLZqFEju8U2hmEoNTVVx48f19tvv12swQEAAMB1FTmR7NWrl93nUqVKqUKFCmrdurX+9a9/FVdcAAAANwyrts0pUiJ58eJFVa1aVZ06dVJYWJijYgIAAMBNoEiLbTw9PfXoo48qOzvbUfEAAADccBYH/lOSFXnVdvPmzbVjxw5HxAIAAOAUpSyOO0qyIs+RHD58uMaOHavDhw+rcePGKlOmjN35Bg0aFFtwAAAAcF2FTiQHDRqkGTNmqE+fPpKk0aNH285ZLBYZhiGLxaLc3NzijxIAAMCBSnrl0FEKnUguWLBAL7/8svbv3+/IeAAAAHCTKHQiaRiGJKlKlSoOCwYAAMAZLOxIbkqRFtvwJQMAAOCyIi22qV279nWTyVOnTv2jgAAAAG405kiaU6RE8rnnnpPVanVULAAAALiJFCmRvP/++xUSEuKoWAAAAJyC2XvmFDqRZH4kAAAoqUqR55hS6MU2l1dtAwAAAFIRKpJ5eXmOjAMAAMBpWGxjTpF/axsAAACQTPzWNgAAQEnDFElzqEgCAADAFCqSAADA7ZUSJUkzqEgCAADAFCqSAADA7TFH0hwSSQAA4PbY/scchrYBAABgChVJAADg9viJRHOoSAIAAMAUKpIAAMDtUZA0h4okAAAATKEiCQAA3B5zJM2hIgkAAABTqEgCAAC3R0HSHBJJAADg9hiiNYfvDQAAAKaQSAIAALdnsVgcdhRFXFycmjZtKn9/f4WEhKhXr17au3evXR/DMDR58mSFh4fLz89PrVu31p49e+z6ZGdna9SoUSpfvrzKlCmjHj166PDhw3Z90tLSFBMTI6vVKqvVqpiYGJ0+fbpI8ZJIAgAAuIi1a9dqxIgRSkxM1MqVK3Xx4kV17NhRmZmZtj7Tpk3Ta6+9ppkzZ2rLli0KCwtThw4ddPbsWVuf2NhYLVmyRIsWLdL69euVkZGhbt26KTc319anX79+SkpKUkJCghISEpSUlKSYmJgixWsxDMP456/tWs5fdHYEABwlsOlIZ4cAwEGydsx02rM/2HrIYfd+sEmE6WuPHz+ukJAQrV27VnfddZcMw1B4eLhiY2P1xBNPSLpUfQwNDdXUqVP1yCOPKD09XRUqVNDChQvVp08fSdKRI0cUERGhFStWqFOnTkpOTlbdunWVmJio5s2bS5ISExMVFRWlX375RZGRkYWKj4okAACAA2VnZ+vMmTN2R3Z2dqGuTU9PlyQFBQVJkvbv36/U1FR17NjR1sfHx0etWrXShg0bJEnbtm1TTk6OXZ/w8HDVq1fP1mfjxo2yWq22JFKSWrRoIavVautTGCSSAADA7ZWyWBx2xMXF2eYhXj7i4uKuG5NhGBozZozuuOMO1atXT5KUmpoqSQoNDbXrGxoaajuXmpoqb29vBQYGXrNPSEhIvmeGhITY+hQG2/8AAAA40MSJEzVmzBi7Nh8fn+teN3LkSO3cuVPr16/Pd+7KRTyGYVx3Yc+VfQrqX5j7/B0VSQAA4PYsDjx8fHwUEBBgd1wvkRw1apSWLl2q1atX65ZbbrG1h4WFSVK+quGxY8dsVcqwsDBduHBBaWlp1+xz9OjRfM89fvx4vmrntZBIAgAAt2exOO4oCsMwNHLkSH3++edatWqVqlWrZne+WrVqCgsL08qVK21tFy5c0Nq1axUdHS1Jaty4sby8vOz6pKSkaPfu3bY+UVFRSk9P1+bNm219Nm3apPT0dFufwmBoGwAAwEWMGDFCH330kb788kv5+/vbKo9Wq1V+fn6yWCyKjY3VlClTVKtWLdWqVUtTpkxR6dKl1a9fP1vfwYMHa+zYsQoODlZQUJDGjRun+vXrq3379pKkOnXqqHPnzhoyZIhmz54tSRo6dKi6detW6BXbEokkAABAkTcOd5RZs2ZJklq3bm3XPm/ePA0cOFCSNGHCBGVlZWn48OFKS0tT8+bN9e2338rf39/Wf/r06fL09FTv3r2VlZWldu3aaf78+fLw8LD1iY+P1+jRo22ru3v06KGZM4u2BRP7SAK4qbCPJFByOXMfyY93/OWwe/dtVMlh93Y2KpIAAMDtsWjEHL43AAAAmEJFEgAAuD1XmSN5s6EiCQAAAFOoSAIAALdHPdIcKpIAAAAwhYokAABwe8yRNIdEEgAAuD2GaM3hewMAAIApVCQBAIDbY2jbHCqSAAAAMIWKJAAAcHvUI82hIgkAAABTqEgCAAC3xxRJc6hIAgAAwBQqkgAAwO2VYpakKSSSAADA7TG0bQ5D2wAAADDFpRLJCxcuaO/evbp48aKzQwEAAG7E4sB/SjKXSCTPnTunwYMHq3Tp0rr11lt18OBBSdLo0aP18ssvOzk6AAAAFMQlEsmJEyfqp59+0po1a+Tr62trb9++vRYvXuzEyAAAgDuwWBx3lGQusdjmiy++0OLFi9WiRQu737qsW7eufv/9dydGBgAAgKtxiUTy+PHjCgkJydeemZnJj6gDAACHY/sfc1xiaLtp06b66quvbJ8vJ49z5sxRVFSUs8ICAADANbhERTIuLk6dO3fWzz//rIsXL+r111/Xnj17tHHjRq1du9bZ4QEAgBKOAVBzXKIiGR0drR9//FHnzp1TjRo19O233yo0NFQbN25U48aNnR0eAAAo4VhsY45LVCQlqX79+lqwYIGzwwAAAEAhuURFsk2bNpo7d67S09OdHQoAAHBDbEhujkskkvXr19fTTz+tsLAw3Xvvvfriiy904cIFZ4cFAACAa3CJRPKNN97QX3/9pS+//FL+/v4aMGCAwsLCNHToUBbbAAAAhytlcdxRkrlEIilJpUqVUseOHTV//nwdPXpUs2fP1ubNm9W2bVtnhwYAAIACuMxim8tSU1O1aNEiffjhh9q5c6eaNm3q7JAAAEAJV9LnMjqKS1Qkz5w5o3nz5qlDhw6KiIjQrFmz1L17d/3666/atGmTs8MDAABAAVyiIhkaGqrAwED17t1bU6ZMoQoJAABuqJK+36OjuEQi+eWXX6p9+/YqVcolCqQAAMDNMLRtjkskkh07dnR2CAAAACgipyWSt99+u77//nsFBgaqUaNGslyjprx9+/YbGBkAAHA3JX2bHkdxWiLZs2dP+fj42P58rUQSAAAArsdiGIbh7CCK2/mLzo4AgKMENh3p7BAAOEjWjplOe/a6X9Mcdu87awc67N7O5hKrW6pXr66TJ0/maz99+rSqV6/uhIgAAABwPS6x2ObAgQPKzc3N156dna3Dhw87ISIAAOBOmGFnjlMTyaVLl9r+/M0338hqtdo+5+bm6vvvv1e1atWcERoAAACuw6mJZK9evSRJFotFAwYMsDvn5eWlqlWr6tVXX3VCZAAAwJ1QkDTHqYlkXl6eJKlatWrasmWLypcv78xwAACAmyrF2LYpLjFHcv/+/aavzc7OVnZ2tl2b4eFj21oIAAAAjuESiaQkZWZmau3atTp48KAuXLhgd2706NFXvS4uLk7PPfecXdtTz0zS089OdkSYAACgBKIeaY5L7CO5Y8cOde3aVefOnVNmZqaCgoJ04sQJlS5dWiEhIfrjjz+uei0VScC9sI8kUHI5cx/JxN9OO+zeLWqWc9i9nc0l9pF8/PHH1b17d506dUp+fn5KTEzUn3/+qcaNG+uVV1655rU+Pj4KCAiwO0giAQBAkVgceJRgLpFIJiUlaezYsfLw8JCHh4eys7MVERGhadOm6cknn3R2eAAAACiASySSXl5ett/aDg0N1cGDByVJVqvV9mcAAABHsTjwn5LMJRbbNGrUSFu3blXt2rXVpk0bPfvsszpx4oQWLlyo+vXrOzs8AAAAFMAlKpJTpkxRxYoVJUkvvPCCgoOD9eijj+rYsWN69913nRwdAAAo6SwWxx0lmUskkk2aNFGbNm0kSRUqVNCKFSt05swZbd++XbfddpuTowMAACWdK621+eGHH9S9e3eFh4fLYrHoiy++sDs/cOBAWSwWu6NFixZ2fbKzszVq1CiVL19eZcqUUY8ePXT48GG7PmlpaYqJiZHVapXValVMTIxOnz5dpFhdIpEEAADAJZmZmbrttts0c+bVt0Pq3LmzUlJSbMeKFSvszsfGxmrJkiVatGiR1q9fr4yMDHXr1k25ubm2Pv369VNSUpISEhKUkJCgpKQkxcTEFClWl5kjaSmg9muxWOTr66uaNWtq4MCBtqolAABAsXKhIeguXbqoS5cu1+zj4+OjsLCwAs+lp6dr7ty5Wrhwodq3by9J+vDDDxUREaHvvvtOnTp1UnJyshISEpSYmKjmzZtLkubMmaOoqCjt3btXkZGRhYrVJSqSnTt31h9//KEyZcqoTZs2at26tcqWLavff/9dTZs2VUpKitq3b68vv/zS2aECAAAUSXZ2ts6cOWN3XPljKkW1Zs0ahYSEqHbt2hoyZIiOHTtmO7dt2zbl5OSoY8eOtrbw8HDVq1dPGzZskCRt3LhRVqvVlkRKUosWLWS1Wm19CsMlEskTJ05o7NixWrdunV599VW99tpr+uGHHzRu3DhlZmbq22+/1dNPP60XXnjB2aECAIASyJHb/8TFxdnmIV4+4uLiTMfapUsXxcfHa9WqVXr11Ve1ZcsWtW3b1pacpqamytvbW4GBgXbXhYaGKjU11dYnJCQk371DQkJsfQrDJYa2P/nkE23bti1f+/3336/GjRtrzpw56tu3r1577TUnRAcAAGDexIkTNWbMGLu2f/IrfH369LH9uV69emrSpImqVKmir776Svfcc89VrzMMw24qYUHTCq/scz0uUZH09fUtsIy6YcMG+fr6SpLy8vL46UMAAOAQjtz+x9E/51yxYkVVqVJF+/btkySFhYXpwoULSktLs+t37NgxhYaG2vocPXo0372OHz9u61MYLlGRHDVqlIYNG6Zt27apadOmslgs2rx5s9577z3bTyR+8803atSokZMjBQAAcC0nT57UoUOHbHtyN27cWF5eXlq5cqV69+4tSUpJSdHu3bs1bdo0SVJUVJTS09O1efNmNWvWTJK0adMmpaenKzo6utDPthiGYRTz+5gSHx+vmTNnau/evZKkyMhIjRo1Sv369ZMkZWVl2VZxX8/5iw4NFYATBTYd6ewQADhI1o6rb3fjaNsPnHHYvW+vGlCk/hkZGfrtt98kXdrZ5rXXXlObNm0UFBSkoKAgTZ48Wffee68qVqyoAwcO6Mknn9TBgweVnJwsf39/SdKjjz6q5cuXa/78+QoKCtK4ceN08uRJbdu2TR4eHpIuzbU8cuSIZs+eLUkaOnSoqlSpomXLlhU6VpdJJIsTiSRQcpFIAiWXUxPJPx2YSFYpWiK5Zs2aArc8HDBggGbNmqVevXppx44dOn36tCpWrKg2bdrohRdeUEREhK3v+fPnNX78eH300UfKyspSu3bt9Pbbb9v1OXXqlEaPHq2lS5dKknr06KGZM2eqXLlyhY7VZRLJ06dP69NPP9Uff/yhcePGKSgoSNu3b1doaKgqVapUpHuRSAIlF4kkUHKRSN58XGKO5M6dO9W+fXtZrVYdOHBADz/8sIKCgrRkyRL9+eef+uCDD5wdIgAAKMEsrrQj+U3EJVZtjxkzRgMHDtS+ffvs5kB26dJFP/zwgxMjAwAAwNW4REVyy5Yttomef1epUqUibYoJAABgRhG2TsTfuERF0tfXV2fO5J+bsHfvXlWoUMEJEQEAAOB6XCKR7Nmzp55//nnl5ORIurTT+sGDB/U///M/uvfee50cHQAAKOksDjxKMpdIJF955RUdP35cISEhysrKUqtWrVSzZk2VLVtWL730krPDAwAAQAFcYo5kQECA1q9fr9WrV2vbtm3Ky8vT7bffrvbt2zs7NAAA4A5KeunQQVwikZSk77//Xt9//72OHTumvLw8/fLLL/roo48kSe+//76TowMAACUZ2/+Y4xKJ5HPPPafnn39eTZo0UcWKFWVh6RQAAIDLc4lE8p133tH8+fMVExPj7FAAAIAbooZljksstrlw4YKio6OdHQYAAACKwCUSyYcfftg2HxIAAOBGY/sfc1xiaPv8+fN699139d1336lBgwby8vKyO//aa685KTIAAABcjUskkjt37lTDhg0lSbt377Y7x8IbAADgcKQbprhEIrl69WpnhwAAAIAicolEEgAAwJnYR9Icl1hsAwAAgJsPFUkAAOD2WJJhDokkAABwe+SR5jC0DQAAAFOoSAIAAFCSNIWKJAAAAEyhIgkAANwe2/+YQ0USAAAAplCRBAAAbo/tf8yhIgkAAABTqEgCAAC3R0HSHBJJAAAAMklTGNoGAACAKVQkAQCA22P7H3OoSAIAAMAUKpIAAMDtsf2POVQkAQAAYAoVSQAA4PYoSJpDRRIAAACmUJEEAACgJGkKiSQAAHB7bP9jDkPbAAAAMIWKJAAAcHts/2MOFUkAAACYQkUSAAC4PQqS5lCRBAAAgClUJAEAAChJmkJFEgAAAKZQkQQAAG6PfSTNIZEEAABuj+1/zGFoGwAAAKZQkQQAAG6PgqQ5VCQBAABgChVJAADg9pgjaQ4VSQAAAJhCIgkAACCLA4+i+eGHH9S9e3eFh4fLYrHoiy++sDtvGIYmT56s8PBw+fn5qXXr1tqzZ49dn+zsbI0aNUrly5dXmTJl1KNHDx0+fNiuT1pammJiYmS1WmW1WhUTE6PTp08XKVYSSQAAABeSmZmp2267TTNnzizw/LRp0/Taa69p5syZ2rJli8LCwtShQwedPXvW1ic2NlZLlizRokWLtH79emVkZKhbt27Kzc219enXr5+SkpKUkJCghIQEJSUlKSYmpkixWgzDMMy9pus6f9HZEQBwlMCmI50dAgAHydpRcOJ0I/x1+oLD7l2pnLfpay0Wi5YsWaJevXpJulSNDA8PV2xsrJ544glJl6qPoaGhmjp1qh555BGlp6erQoUKWrhwofr06SNJOnLkiCIiIrRixQp16tRJycnJqlu3rhITE9W8eXNJUmJioqKiovTLL78oMjKyUPFRkQQAAG7PkQPb2dnZOnPmjN2RnZ1tKs79+/crNTVVHTt2tLX5+PioVatW2rBhgyRp27ZtysnJsesTHh6uevXq2fps3LhRVqvVlkRKUosWLWS1Wm19CoNEEgAAwIHi4uJs8xAvH3FxcabulZqaKkkKDQ21aw8NDbWdS01Nlbe3twIDA6/ZJyQkJN/9Q0JCbH0Kg+1/AACA23Pk9j8TJ07UmDFj7Np8fHz+0T0tVwRsGEa+titd2aeg/oW5z99RkQQAAHAgHx8fBQQE2B1mE8mwsDBJylc1PHbsmK1KGRYWpgsXLigtLe2afY4ePZrv/sePH89X7bwWEkkAAOD2LA78pzhVq1ZNYWFhWrlypa3twoULWrt2raKjoyVJjRs3lpeXl12flJQU7d6929YnKipK6enp2rx5s63Ppk2blJ6ebutTGAxtAwAAuJCMjAz99ttvts/79+9XUlKSgoKCVLlyZcXGxmrKlCmqVauWatWqpSlTpqh06dLq16+fJMlqtWrw4MEaO3asgoODFRQUpHHjxql+/fpq3769JKlOnTrq3LmzhgwZotmzZ0uShg4dqm7duhV6xbZEIgkAAGBm33CH2bp1q9q0aWP7fHl+5YABAzR//nxNmDBBWVlZGj58uNLS0tS8eXN9++238vf3t10zffp0eXp6qnfv3srKylK7du00f/58eXh42PrEx8dr9OjRttXdPXr0uOrelVfDPpIAbirsIwmUXM7cRzL1TI7D7h0W4OWwezsbFUkAAOD2XKggeVMhkQQAAG7Pkdv/lGSs2gYAAIApVCQBAIDbK+5tetwFFUkAAACYQkUSAACAgqQpVCQBAABgChVJAADg9ihImkNFEgAAAKZQkQQAAG6PfSTNIZEEAABuj+1/zGFoGwAAAKZQkQQAAG6PoW1zqEgCAADAFBJJAAAAmEIiCQAAAFOYIwkAANwecyTNoSIJAAAAU6hIAgAAt8c+kuaQSAIAALfH0LY5DG0DAADAFCqSAADA7VGQNIeKJAAAAEyhIgkAAEBJ0hQqkgAAADCFiiQAAHB7bP9jDhVJAAAAmEJFEgAAuD32kTSHiiQAAABMoSIJAADcHgVJc0gkAQAAyCRNYWgbAAAAplCRBAAAbo/tf8yhIgkAAABTqEgCAAC3x/Y/5lCRBAAAgCkWwzAMZwcBmJWdna24uDhNnDhRPj4+zg4HQDHi7zfg+kgkcVM7c+aMrFar0tPTFRAQ4OxwABQj/n4Dro+hbQAAAJhCIgkAAABTSCQBAABgCokkbmo+Pj6aNGkSE/GBEoi/34DrY7ENAAAATKEiCQAAAFNIJAEAAGAKiSQAAABMIZHETWnNmjWyWCw6ffr0NftVrVpVM2bMuCExAXCeyZMnq2HDhs4OA3A7LLbBTenChQs6deqUQkNDZbFYNH/+fMXGxuZLLI8fP64yZcqodOnSzgkUQLGzWCxasmSJevXqZWvLyMhQdna2goODnRcY4IY8nR0AYIa3t7fCwsKu269ChQo3IBoAzla2bFmVLVvW2WEAboehbThM69atNXLkSI0cOVLlypVTcHCwnn76aV0ugqelpenBBx9UYGCgSpcurS5dumjfvn226//88091795dgYGBKlOmjG699VatWLFCkv3Q9po1a/TQQw8pPT1dFotFFotFkydPlmQ/tN23b1/df//9djHm5OSofPnymjdvniTJMAxNmzZN1atXl5+fn2677TZ9+umnDv6mgJtD69atNXr0aE2YMEFBQUEKCwuz/V2TpPT0dA0dOlQhISEKCAhQ27Zt9dNPP9nd48UXX1RISIj8/f318MMP63/+53/shqS3bNmiDh06qHz58rJarWrVqpW2b99uO1+1alVJ0r///W9ZLBbb578PbX/zzTfy9fXNN0IxevRotWrVyvZ5w4YNuuuuu+Tn56eIiAiNHj1amZmZ//h7AtwJiSQcasGCBfL09NSmTZv0xhtvaPr06XrvvfckSQMHDtTWrVu1dOlSbdy4UYZhqGvXrsrJyZEkjRgxQtnZ2frhhx+0a9cuTZ06tcCKQ3R0tGbMmKGAgAClpKQoJSVF48aNy9evf//+Wrp0qTIyMmxt33zzjTIzM3XvvfdKkp5++mnNmzdPs2bN0p49e/T444/rgQce0Nq1ax3x9QA3nQULFqhMmTLatGmTpk2bpueff14rV66UYRi6++67lZqaqhUrVmjbtm26/fbb1a5dO506dUqSFB8fr5deeklTp07Vtm3bVLlyZc2aNcvu/mfPntWAAQO0bt06JSYmqlatWuratavOnj0r6VKiKUnz5s1TSkqK7fPftW/fXuXKldNnn31ma8vNzdUnn3yi/v37S5J27dqlTp066Z577tHOnTu1ePFirV+/XiNHjnTI9waUWAbgIK1atTLq1Klj5OXl2dqeeOIJo06dOsavv/5qSDJ+/PFH27kTJ04Yfn5+xieffGIYhmHUr1/fmDx5coH3Xr16tSHJSEtLMwzDMObNm2dYrdZ8/apUqWJMnz7dMAzDuHDhglG+fHnjgw8+sJ3v27evcd999xmGYRgZGRmGr6+vsWHDBrt7DB482Ojbt2+R3x8oaVq1amXccccddm1NmzY1nnjiCeP77783AgICjPPnz9udr1GjhjF79mzDMAyjefPmxogRI+zOt2zZ0rjtttuu+syLFy8a/v7+xrJly2xtkowlS5bY9Zs0aZLdfUaPHm20bdvW9vmbb74xvL29jVOnThmGYRgxMTHG0KFD7e6xbt06o1SpUkZWVtZV4wFgj4okHKpFixayWCy2z1FRUdq3b59+/vlneXp6qnnz5rZzwcHBioyMVHJysqRLw1AvvviiWrZsqUmTJmnnzp3/KBYvLy/dd999io+PlyRlZmbqyy+/tFUofv75Z50/f14dOnSwzbcqW7asPvjgA/3+++//6NlASdGgQQO7zxUrVtSxY8e0bds2ZWRkKDg42O7vz/79+21/f/bu3atmzZrZXX/l52PHjmnYsGGqXbu2rFarrFarMjIydPDgwSLF2b9/f61Zs0ZHjhyRdKka2rVrVwUGBkqStm3bpvnz59vF2qlTJ+Xl5Wn//v1FehbgzlhsA5diGIYt8Xz44YfVqVMnffXVV/r2228VFxenV199VaNGjTJ9//79+6tVq1Y6duyYVq5cKV9fX3Xp0kWSlJeXJ0n66quvVKlSJbvr+K1f4BIvLy+7zxaLRXl5ecrLy1PFihW1Zs2afNeUK1fOrv/fGVdsHDJw4EAdP35cM2bMUJUqVeTj46OoqChduHChSHE2a9ZMNWrU0KJFi/Too49qyZIltrnQ0qW/74888ohGjx6d79rKlSsX6VmAOyORhEMlJibm+1yrVi3VrVtXFy9e1KZNmxQdHS1JOnnypH799VfVqVPH1j8iIkLDhg3TsGHDNHHiRM2ZM6fARNLb21u5ubnXjSc6OloRERFavHixvv76a913333y9vaWJNWtW1c+Pj46ePCg3YR8ANd3++23KzU1VZ6enrYFMFeKjIzU5s2bFRMTY2vbunWrXZ9169bp7bffVteuXSVJhw4d0okTJ+z6eHl5Ferve79+/RQfH69bbrlFpUqV0t13320X7549e1SzZs3CviKAAjC0DYc6dOiQxowZo7179+rjjz/Wm2++qccee0y1atVSz549NWTIEK1fv14//fSTHnjgAVWqVEk9e/aUJMXGxuqbb77R/v37tX37dq1atcouyfy7qlWrKiMjQ99//71OnDihc+fOFdjPYrGoX79+euedd7Ry5Uo98MADtnP+/v4aN26cHn/8cS1YsEC///67duzYobfeeksLFiwo/i8HKEHat2+vqKgo9erVS998840OHDigDRs26Omnn7Yli6NGjdLcuXO1YMEC7du3Ty+++KJ27txpV6WsWbOmFi5cqOTkZG3atEn9+/eXn5+f3bOqVq2q77//XqmpqUpLS7tqTP3799f27dv10ksv6T//+Y98fX1t55544glt3LhRI0aMUFJSkvbt26elS5f+oxEPwB2RSMKhHnzwQWVlZalZs2YaMWKERo0apaFDh0q6tOqycePG6tatm6KiomQYhlasWGEbOsvNzdWIESNUp04dde7cWZGRkXr77bcLfE50dLSGDRumPn36qEKFCpo2bdpVY+rfv79+/vlnVapUSS1btrQ798ILL+jZZ59VXFyc6tSpo06dOmnZsmWqVq1aMX0jQMlksVi0YsUK3XXXXRo0aJBq166t+++/XwcOHFBoaKikS3/3Jk6cqHHjxun222/X/v37NXDgQLsE7/3331daWpoaNWqkmJgYjR49WiEhIXbPevXVV7Vy5UpFRESoUaNGV42pVq1aatq0qXbu3GmbC31ZgwYNtHbtWu3bt0933nmnGjVqpGeeeUYVK1Ysxm8FKPn4ZRs4TOvWrdWwYUN+ohDAVXXo0EFhYWFauHChs0MBYAJzJAEAN8S5c+f0zjvvqFOnTvLw8NDHH3+s7777TitXrnR2aABMIpEEANwQl4e/X3zxRWVnZysyMlKfffaZ2rdv7+zQAJjE0DYAAABMYbENAAAATCGRBAAAgCkkkgAAADCFRBIAAACmkEgCAADAFBJJAKZNnjxZDRs2tH0eOHCgevXqdcPjOHDggCwWi5KSkhz2jCvf1YwbEScA3EgkkkAJM3DgQFksFlksFnl5eal69eoaN26cMjMzHf7s119/XfPnzy9U3xudVLVu3VqxsbE35FkA4C7YkBwogTp37qx58+YpJydH69at08MPP6zMzEzNmjUrX9+cnBzb75v/U1artVjuAwC4OVCRBEogHx8fhYWFKSIiQv369VP//v31xRdfSPq/Idr3339f1atXl4+PjwzDUHp6uoYOHaqQkBAFBASobdu2+umnn+zu+/LLLys0NFT+/v4aPHiwzp8/b3f+yqHtvLw8TZ06VTVr1pSPj48qV66sl156SZJUrVo1SVKjRo1ksVjUunVr23Xz5s1TnTp15Ovrq3/96196++237Z6zefNmNWrUSL6+vmrSpIl27Njxj7+zJ554QrVr11bp0qVVvXp1PfPMM8rJycnXb/bs2YqIiFDp0qV133336fTp03bnrxf736Wlpal///6qUKGC/Pz8VKtWLc2bN+8fvwsA3ChUJAE34OfnZ5cU/fbbb/rkk0/02WefycPDQ5J09913KygoSCtWrJDVatXs2bPVrl07/frrrwoKCtInn3yiSZMm6a233tKdd96phQsX6o033lD16tWv+tyJEydqzpw5mj59uu644w6lpKTol19+kXQpGWzWrJm+++473XrrrfL29pYkzZkzR5MmTdLMmTPVqFEj7dixQ0OGDFGZMmU0YMAAZWZmqlu3bmrbtq0+/PBD7d+/X4899tg//o78/f01f/58hYeHa9euXRoyZIj8/f01YcKEfN/bsmXLdObMGQ0ePFgjRoxQfHx8oWK/0jPPPKOff/5ZX3/9tcqXL6/ffvtNWVlZ//hdAOCGMQCUKAMGDDB69uxp+7xp0yYjODjY6N27t2EYhjFp0iTDy8vLOHbsmK3P999/bwQEBBjnz5+3u1eNGjWM2bNnG4ZhGFFRUcawYcPszjdv3ty47bbbCnz2mTNnDB8fH2POnDkFxrl//35DkrFjxw679oiICOOjjz6ya3vhhReMqKgowzAMY/bs2UZQUJCRmZlpOz9r1qwC7/V3rVq1Mh577LGrnr/StGnTjMaNG9s+T5o0yfDw8DAOHTpka/v666+NUqVKGSkpKYWK/cp37t69u/HQQw8VOiYAcDVUJIESaPny5SpbtqwuXryonJwc9ezZU2+++abtfJUqVVShQgXb523btikjI0PBwcF298nKytLvv/8uSUpOTtawYcPszkdFRWn16tUFxpCcnKzs7Gy1a9eu0HEfP35chw4d0uDBgzVkyBBb+8WLF23zL5OTk3XbbbepdOnSdnH8U59++qlmzJih3377TRkZGbp48aICAgLs+lSuXFm33HKL3XPz8vK0d+9eeXh4XDf2Kz366KO69957tX37dnXs2FG9evVSdHT0P34XALhRSCSBEqhNmzaaNWuWvLy8FB4enm8xTZkyZew+5+XlqWLFilqzZk2+e5UrV85UDH5+fkW+Ji8vT9KlIeLmzZvbnbs8BG8Yhql4riUxMVH333+/nnvuOXXq1ElWq1WLFi3Sq6++es3rLBaL7f8WJvYrdenSRX/++ae++uorfffdd2rXrp1GjBihV155pRjeCgAcj0QSKIHKlCmjmjVrFrr/7bffrtTUVHl6eqpq1aoF9qlTp44SExP14IMP2toSExOves9atWrJz89P33//vR5++OF85y/PiczNzbW1hYaGqlKlSvrjjz/Uv3//Au9bt25dLVy4UFlZWbZk9VpxFMaPP/6oKlWq6KmnnrK1/fnnn/n6HTx4UEeOHFF4eLgkaePGjSpVqpRq165dqNgLUqFCBQ0cOFADBw7UnXfeqfHjx5NIArhpkEgCUPv27RUVFaVevXpp6tSpioyM1JEjR7RixQr16tVLTZo00WOPPaYBAwaoSZMmuuOOOxQfH689e/ZcdbGNr6+vnnjiCU2YMEHe3t5q2bKljh8/rj179mjw4MEKCQmRn5+fEhISdMstt8jX11dWq1WTJ0/W6NGjFRAQoC5duig7O1tbt25VWlqaxowZo379+umpp57S4MGD9fTTT+vAgQOFTryOHz+eb9/KsLAw1axZUwcPHtSiRYvUtGlTffXVV1qyZEmB7zRgwAC98sorOnPmjEaPHq3evXsrLCxMkq4b+5WeffZZNW7cWLfeequys7O1fPly1alTp1DvAgAuwdmTNAEUrysX21xp0qRJdgtkLjtz5owxatQoIzw83PDy8jIiIiKM/v37GwcPHrT1eemll4zy5csbZcuWNQYMGGBMmDDhqottDMMwcnNzjRdffNGoUqWK4eXlZVSuXNmYMmWK7fycOXOMiIgIo1SpUkarVq1s7fHx8UbDhg0Nb29vIzAw0LjrrruMzz//3HZ+48aNxm233WZ4e3sbDRs2ND777LNCLbaRlO+YNGmSYRiGMX78eCM4ONgoW7as0adPH2P69OmG1WrN9729/fbbRnh4uOHr62vcc889xqlTp+yec63Yr1xs88ILLxh16tQx/Pz8jKCgIKNnz57GH3/8cdV3AABXYzEMB0w4AgAAQInHhuQAAAAwhUQSAAAAppBIAgAAwBQSSQAAAJhCIgkAAABTSCQBAABgCokkAAAATCGRBAAAgCkkkgAAADCFRBIAAACmkEgCAADAlP8Hqf7JB2esBkAAAAAASUVORK5CYII=",
            "text/plain": [
              "<Figure size 800x600 with 2 Axes>"
            ]
          },
          "metadata": {},
          "output_type": "display_data"
        }
      ],
      "source": [
        "plot_confusion_matrix(y_test, y_pred, ['positive', 'negative'], 'NB')"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 12,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "2580FJCGs_oQ",
        "outputId": "118f79e2-6b57-4cc0-a631-c2ef8a7e317e"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Classification Report NB:\n",
            "              precision    recall  f1-score   support\n",
            "\n",
            "    negative       0.86      0.87      0.86      5017\n",
            "    positive       0.87      0.86      0.86      4983\n",
            "\n",
            "    accuracy                           0.86     10000\n",
            "   macro avg       0.86      0.86      0.86     10000\n",
            "weighted avg       0.86      0.86      0.86     10000\n",
            "\n"
          ]
        }
      ],
      "source": [
        "# Imprimir as métricas de avaliação\n",
        "print_evaluation_metrics(y_test, y_pred, 'NB')"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "x0JBy6nXvdjC"
      },
      "source": [
        "# Conclusão\n",
        "\n",
        "É possível verificar no relatório de classificação que precisão e recall estão variando entre 86 a 87%. A métrica **F1-Score** combina precisão e recall, possui valor de aproximadamente 86%, o que indica um bom equilíbrio entre precisão e recall. A **Acurácia (accuracy)** geral do modelo é de 86%, o que significa que ele classificou corretamente aproximadamente 86% de todos os exemplos no conjunto de teste.\n",
        "\n",
        "O modelo Naive Bayes com vetorização TF-IDF conseguiu alcançar uma precisão, recall e F1-Score bastante equilibrados para ambas as classes, com uma acurácia geral de 86%. Podemos afirmar que o modelo é capaz de fazer previsões precisas em relação ao sentimento das revisões. Assim, podemos afirmar que o modelo estatístico possui um desempenho consideravelmente superior em relação à abordagem simbólica.\n"
      ]
    }
  ],
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "gpuType": "T4",
      "provenance": []
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "codemirror_mode": {
        "name": "ipython",
        "version": 3
      },
      "file_extension": ".py",
      "mimetype": "text/x-python",
      "name": "python",
      "nbconvert_exporter": "python",
      "pygments_lexer": "ipython3",
      "version": "3.11.7"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}