File size: 59,959 Bytes
613102e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "lawNHLqffR_m"
},
"source": [
"# SCC0633/SCC5908 - Processamento de Linguagem Natural\n",
"> **Docente:** Thiago Alexandre Salgueiro Pardo \\\n",
"> **Estagiário PAE:** Germano Antonio Zani Jorge\n",
"\n",
"\n",
"# Integrantes do Grupo: GPTrouxas\n",
"> André Guarnier De Mitri - 11395579 \\\n",
"> Daniel Carvalho - 10685702 \\\n",
"> Fernando - 11795342 \\\n",
"> Lucas Henrique Sant'Anna - 10748521 \\\n",
"> Magaly L Fujimoto - 4890582"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "pV6WGoBln8id"
},
"source": [
"# New Section"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Abordagem Estatístico\n",
"A arquitetura da solução estatística/neural envolve duas abordagens que\n",
"serão descritas neste documento. A primeira abordagem envolve utilizar\n",
"TF-IDF e Naive Bayes. E a segunda abordagem irá utilizar Word2Vec e um\n",
"modelo transformers pré-treinado da família BERT, realizando finetuning do\n",
"modelo.\n",
"\n",
"Na primeira abordagem, utilizaremos o TF-IDF, que leva em consideração a\n",
"frequência de ocorrência dos termos em um corpus e gera uma sequência de\n",
"vetores que serão fornecidos ao Naive Bayes para classificação da review como\n",
"positiva ou negativa.\n",
"\n",
"\n",
"Na segunda abordagem, utilizaremos o Word2Vec para vetorizar as reviews.\n",
"Após dividir em treino e teste, faremos o fine tuning de um modelo do tipo BERT\n",
"para o nosso problema e dataset específico. Com o BERT adaptado, faremos a\n",
"classificação de nossos textos, medindo o seu desempenho com F1 score e\n",
"acurácia.\n",
"\n",
"![alt text](../imagens/BERT_TDIDF.png)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "vfP54aryxZBg"
},
"source": [
"\n",
"## # Etapas da Abordagem Estatística\n",
"\n",
"1. **Bibliotecas**: Importamos as bibliotecas necessárias, considerando pandas para manipulação de dados, train_test_split para dividir o conjunto de dados em conjuntos de treinamento e teste, TfidfVectorizer para vetorização de texto usando TF-IDF, MultinomialNB para implementar o classificador Naive Bayes Multinomial e algumas métricas de avaliação.\n",
"\n",
"2. **Conjunto de dados**: Carregar o conjunto de dados e armazená-lo em um dataframe usando pandas.\n",
"\n",
"3. **Dividir o conjunto de dados**: Usamos `train_test_split` para dividir o DataFrame em conjuntos de treinamento e teste.\n",
"\n",
"4. **TF-IDF**: Usamos `TfidfVectorizer` para converter as revisões de texto em vetores numéricos usando a técnica TF-IDF. Em seguida, ajustamos e transformamos tanto o conjunto de treinamento quanto o conjunto de teste.\n",
"\n",
"5. **Naive Bayes**: Treinamos um classificador Naive Bayes Multinomial e usamos o modelo treinado para prever os sentimentos no conjunto de teste usando `predict`.\n",
"\n",
"6. **Avaliação e Resultados**: Salvamos os resultados em um novo dataframe `results_df` contendo as revisões do conjunto de teste, os sentimentos originais e os sentimentos previstos pelo modelo. Além disso, avaliamos o modelo verificando algumas métricas e a matriz de confusão.\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "TbLraa4UhWDJ"
},
"source": [
"\n",
"## # Baixando, Carregando os dados e Pré Processamento\n",
"\n",
"1. Transformar todos os textos em lowercase \\\\\n",
"2. Remoção de caracteres especiais \\\\\n",
"3. Remoção de stop words \\\\\n",
"4. Lematização (Lemmatization) \\\\\n",
"5. Tokenização \\\\"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "bIWmIe0qfTbE"
},
"outputs": [],
"source": [
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "Wf0n2yPdAn4C",
"outputId": "37eb3c4d-40c1-41a0-9b1a-d93ed6e272f3"
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>review</th>\n",
" <th>sentiment</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>One of the other reviewers has mentioned that ...</td>\n",
" <td>positive</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>A wonderful little production. <br /><br />The...</td>\n",
" <td>positive</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>I thought this was a wonderful way to spend ti...</td>\n",
" <td>positive</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Basically there's a family where a little boy ...</td>\n",
" <td>negative</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Petter Mattei's \"Love in the Time of Money\" is...</td>\n",
" <td>positive</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" review sentiment\n",
"0 One of the other reviewers has mentioned that ... positive\n",
"1 A wonderful little production. <br /><br />The... positive\n",
"2 I thought this was a wonderful way to spend ti... positive\n",
"3 Basically there's a family where a little boy ... negative\n",
"4 Petter Mattei's \"Love in the Time of Money\" is... positive"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"db = pd.read_csv('../data/imdb_reviews.csv')\n",
"db.head(5)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "6PlfPScGMF1_",
"outputId": "2a0bd4a1-e22a-429d-82a4-5984eeab7b9d"
},
"outputs": [
{
"data": {
"text/plain": [
"sentiment\n",
"positive 25000\n",
"negative 25000\n",
"Name: count, dtype: int64"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"db['sentiment'].value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Kev0EaSmMa4N",
"outputId": "eab73a61-ba36-4d72-e4f2-82236f9f2880"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Quantidade de valores faltantes para cada variável do dataset:\n",
"review 0\n",
"sentiment 0\n",
"dtype: int64\n"
]
}
],
"source": [
"valores_ausentes = db.isnull().sum(axis=0)\n",
"print('Quantidade de valores faltantes para cada variável do dataset:')\n",
"print(valores_ausentes)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 276
},
"id": "1AI3rN0KMuUq",
"outputId": "7ea5c91b-362e-49eb-82a7-6e8535f0e591"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"[nltk_data] Downloading package stopwords to\n",
"[nltk_data] C:\\Users\\andre\\AppData\\Roaming\\nltk_data...\n",
"[nltk_data] Package stopwords is already up-to-date!\n",
"[nltk_data] Downloading package wordnet to\n",
"[nltk_data] C:\\Users\\andre\\AppData\\Roaming\\nltk_data...\n",
"[nltk_data] Package wordnet is already up-to-date!\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>review</th>\n",
" <th>sentiment</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>one reviewer mentioned watching 1 oz episode h...</td>\n",
" <td>positive</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>wonderful little production filming technique ...</td>\n",
" <td>positive</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>thought wonderful way spend time hot summer we...</td>\n",
" <td>positive</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>basically family little boy jake think zombie ...</td>\n",
" <td>negative</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>petter mattei love time money visually stunnin...</td>\n",
" <td>positive</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" review sentiment\n",
"0 one reviewer mentioned watching 1 oz episode h... positive\n",
"1 wonderful little production filming technique ... positive\n",
"2 thought wonderful way spend time hot summer we... positive\n",
"3 basically family little boy jake think zombie ... negative\n",
"4 petter mattei love time money visually stunnin... positive"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import re\n",
"import nltk\n",
"from nltk.corpus import stopwords\n",
"from nltk.stem import PorterStemmer\n",
"from nltk.stem import WordNetLemmatizer\n",
"\n",
"def lowercase_text(text):\n",
" return text.lower()\n",
"\n",
"def remove_html(text):\n",
" return re.sub(r'<[^<]+?>', '', text)\n",
"\n",
"def remove_url(text):\n",
" return re.sub(r'http[s]?://\\S+|www\\.\\S+', '', text)\n",
"\n",
"def remove_punctuations(text):\n",
" tokens_list = '!\"#$%&\\'()*+,-./:;<=>?@[\\\\]^_`{|}~'\n",
" for char in text:\n",
" if char in tokens_list:\n",
" text = text.replace(char, ' ')\n",
"\n",
" return text\n",
"\n",
"def remove_emojis(text):\n",
" emojis = re.compile(\"[\"\n",
" u\"\\U0001F600-\\U0001F64F\"\n",
" u\"\\U0001F300-\\U0001F5FF\"\n",
" u\"\\U0001F680-\\U0001F6FF\"\n",
" u\"\\U0001F1E0-\\U0001F1FF\"\n",
" u\"\\U00002500-\\U00002BEF\"\n",
" u\"\\U00002702-\\U000027B0\"\n",
" u\"\\U00002702-\\U000027B0\"\n",
" u\"\\U000024C2-\\U0001F251\"\n",
" u\"\\U0001f926-\\U0001f937\"\n",
" u\"\\U00010000-\\U0010ffff\"\n",
" u\"\\u2640-\\u2642\"\n",
" u\"\\u2600-\\u2B55\"\n",
" u\"\\u200d\"\n",
" u\"\\u23cf\"\n",
" u\"\\u23e9\"\n",
" u\"\\u231a\"\n",
" u\"\\ufe0f\"\n",
" u\"\\u3030\"\n",
" \"]+\", re.UNICODE)\n",
"\n",
" text = re.sub(emojis, '', text)\n",
" return text\n",
"\n",
"def remove_stop_words(text):\n",
" stop_words = stopwords.words('english')\n",
" new_text = ''\n",
" for word in text.split():\n",
" if word not in stop_words:\n",
" new_text += ''.join(f'{word} ')\n",
"\n",
" return new_text.strip()\n",
"\n",
"def lem_words(text):\n",
" lemma = WordNetLemmatizer()\n",
" new_text = ''\n",
" for word in text.split():\n",
" new_text += ''.join(f'{lemma.lemmatize(word)} ')\n",
"\n",
" return new_text\n",
"\n",
"def preprocess_text(text):\n",
" text = lowercase_text(text)\n",
" text = remove_html(text)\n",
" text = remove_url(text)\n",
" text = remove_punctuations(text)\n",
" text = remove_emojis(text)\n",
" text = remove_stop_words(text)\n",
" text = lem_words(text)\n",
"\n",
" return text\n",
"\n",
"nltk.download('stopwords')\n",
"nltk.download('wordnet')\n",
"db['review'] = db['review'].apply(preprocess_text)\n",
"db.head()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "QgufZpgHnPa4"
},
"source": [
"# **Conjunto de Treino e teste**"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"id": "s0lJ6Q0tnPka"
},
"outputs": [],
"source": [
"from sklearn.model_selection import train_test_split\n",
"\n",
"X= db['review']\n",
"y= db['sentiment']\n",
"\n",
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size= 0.2, random_state= 12)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "nz4erCEJuD4-",
"outputId": "88d57536-66e7-4d9b-e016-bf40183d4c45"
},
"outputs": [
{
"data": {
"text/plain": [
"35235 disagree people saying lousy horror film good ...\n",
"36936 husband wife doctor team carole nile nelson mo...\n",
"46486 like cast pretty much however story sort unfol...\n",
"27160 movie awful bad bear expend anything word avoi...\n",
"19490 purchased blood castle dvd ebay buck knowing s...\n",
" ... \n",
"36482 strange thing see film scene work rather weakl...\n",
"40177 saw cheap dvd release title entity force since...\n",
"19709 one peculiar oft used romance movie plot one s...\n",
"38555 nothing positive say meandering nonsense huffi...\n",
"14155 low moment life bewildered depressed sitting r...\n",
"Name: review, Length: 40000, dtype: object"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X_train"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "6LX-6e-QlioJ"
},
"source": [
"# **TD-IDF e Naive Bayes**"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"id": "gscB9-obNusA"
},
"outputs": [],
"source": [
"from sklearn.metrics import confusion_matrix,classification_report\n",
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
"from sklearn.preprocessing import StandardScaler as encoder\n",
"from sklearn.metrics import (\n",
" accuracy_score,\n",
" confusion_matrix,\n",
" ConfusionMatrixDisplay,\n",
" f1_score,\n",
")\n",
"\n",
"\n",
"tfidf = TfidfVectorizer()\n",
"tfidf_train = tfidf.fit_transform(X_train)\n",
"tfidf_test = tfidf.transform(X_test)\n",
"\n",
"from sklearn.naive_bayes import MultinomialNB\n",
"\n",
"naive_bayes = MultinomialNB()\n",
"\n",
"naive_bayes.fit(tfidf_train, y_train)\n",
"y_pred = naive_bayes.predict(tfidf_test)\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "RfJ7AHMZvAb8",
"outputId": "685701e1-b1e8-47fb-9dc5-1bc04dd3894b"
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>review</th>\n",
" <th>original sentiment</th>\n",
" <th>predicted sentiment</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>34622</th>\n",
" <td>hard tell noonan marshall trying ape abbott co...</td>\n",
" <td>negative</td>\n",
" <td>negative</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1163</th>\n",
" <td>well start one reviewer said know real treat s...</td>\n",
" <td>positive</td>\n",
" <td>positive</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7637</th>\n",
" <td>wife kid opinion absolute abc classic seen eve...</td>\n",
" <td>positive</td>\n",
" <td>positive</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7045</th>\n",
" <td>surprise basic copycat comedy classic nutty pr...</td>\n",
" <td>positive</td>\n",
" <td>positive</td>\n",
" </tr>\n",
" <tr>\n",
" <th>43847</th>\n",
" <td>josef von sternberg directs magnificent silent...</td>\n",
" <td>positive</td>\n",
" <td>positive</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" review original sentiment \\\n",
"34622 hard tell noonan marshall trying ape abbott co... negative \n",
"1163 well start one reviewer said know real treat s... positive \n",
"7637 wife kid opinion absolute abc classic seen eve... positive \n",
"7045 surprise basic copycat comedy classic nutty pr... positive \n",
"43847 josef von sternberg directs magnificent silent... positive \n",
"\n",
" predicted sentiment \n",
"34622 negative \n",
"1163 positive \n",
"7637 positive \n",
"7045 positive \n",
"43847 positive "
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Criando DataFrame com resultados\n",
"results_df = pd.DataFrame({'review': X_test, 'original sentiment': y_test, 'predicted sentiment': y_pred})\n",
"results_df.head()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "8Xq2ABXYtsjk"
},
"source": [
"## Avaliação"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"id": "3lXqDNhSrhsZ"
},
"outputs": [],
"source": [
"from sklearn.metrics import confusion_matrix, classification_report\n",
"import seaborn as sns\n",
"import matplotlib.pyplot as plt\n",
"\n",
"def plot_confusion_matrix(y_true, y_pred, labels, model_name):\n",
" cm = confusion_matrix(y_true, y_pred, labels=labels)\n",
" plt.figure(figsize=(8, 6))\n",
" sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=labels, yticklabels=labels)\n",
" plt.xlabel('Predicted Labels')\n",
" plt.ylabel('True Labels')\n",
" plt.title(f'Confusion Matrix {model_name}')\n",
" plt.show()\n",
"\n",
"# Função para calcular e imprimir as métricas de avaliação\n",
"def print_evaluation_metrics(y_true, y_pred, model_name):\n",
" print(f\"Classification Report {model_name}:\")\n",
" print(classification_report(y_true, y_pred))\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 564
},
"id": "ybfb_GKDuqmb",
"outputId": "3e4c3a98-8962-4ce8-9856-2252f769a1b8"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAAIhCAYAAAD91lq9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABdSklEQVR4nO3deVxUdd//8ffIrsIIKCCGu3JpaporWLmvuV11pamRpmnmFrl126Ztkt6VVpaZmZpR2lVZakZZLmmKO7lEZqWpCa6IgogI5/eHP+duBBVOjDMyr2eP87id7/mecz5nHrdXnz7fZSyGYRgCAAAAiqiUswMAAADAzYlEEgAAAKaQSAIAAMAUEkkAAACYQiIJAAAAU0gkAQAAYAqJJAAAAEwhkQQAAIApJJIAAAAwhUQSuEF27typhx56SNWqVZOvr6/Kli2r22+/XdOmTdOpU6cc+uwdO3aoVatWslqtslgsmjFjRrE/w2KxaPLkycV+3+uZP3++LBaLLBaL1qxZk++8YRiqWbOmLBaLWrdubeoZb7/9tubPn1+ka9asWXPVmMy4/J6+vr76888/851v3bq16tWrZ9dWtWpV23dz+dqaNWtqzJgxOnHiRLHEBcC9eTo7AMAdzJkzR8OHD1dkZKTGjx+vunXrKicnR1u3btU777yjjRs3asmSJQ57/qBBg5SZmalFixYpMDBQVatWLfZnbNy4Ubfcckux37ew/P39NXfu3HzJ4tq1a/X777/L39/f9L3ffvttlS9fXgMHDiz0Nbfffrs2btyounXrmn5uQbKzs/X0009r4cKFherfsmVLvfLKK5KkrKwsbd26VZMnT9YPP/ygrVu3FmtsANwPiSTgYBs3btSjjz6qDh066IsvvpCPj4/tXIcOHTR27FglJCQ4NIbdu3dryJAh6tKli8Oe0aJFC4fduzD69Omj+Ph4vfXWWwoICLC1z507V1FRUTpz5swNiSMnJ0cWi0UBAQEO+U46d+6sjz76SOPGjdNtt9123f7lypWzi6NNmzY6e/asXnjhBf3666+qXbt2sccIwH0wtA042JQpU2SxWPTuu+/aJZGXeXt7q0ePHrbPeXl5mjZtmv71r3/Jx8dHISEhevDBB3X48GG76y4PZW7ZskV33nmnSpcurerVq+vll19WXl6epP8bDr148aJmzZplG+KUpMmTJ9v+/HeXrzlw4ICtbdWqVWrdurWCg4Pl5+enypUr695779W5c+dsfQoa2t69e7d69uypwMBA+fr6qmHDhlqwYIFdn8tDwB9//LGeeuophYeHKyAgQO3bt9fevXsL9yVL6tu3ryTp448/trWlp6frs88+06BBgwq85rnnnlPz5s0VFBSkgIAA3X777Zo7d64Mw7D1qVq1qvbs2aO1a9favr/LFd3LsS9cuFBjx45VpUqV5OPjo99++y3f0PaJEycUERGh6Oho5eTk2O7/888/q0yZMoqJiSnUe06YMEHBwcF64oknCv3dXMlqtUqSvLy8TN8DACQSScChcnNztWrVKjVu3FgRERGFuubRRx/VE088oQ4dOmjp0qV64YUXlJCQoOjo6Hzz2lJTU9W/f3898MADWrp0qbp06aKJEyfqww8/lCTdfffd2rhxoyTpP//5jzZu3Gj7XFgHDhzQ3XffLW9vb73//vtKSEjQyy+/rDJlyujChQtXvW7v3r2Kjo7Wnj179MYbb+jzzz9X3bp1NXDgQE2bNi1f/yeffFJ//vmn3nvvPb377rvat2+funfvrtzc3ELFGRAQoP/85z96//33bW0ff/yxSpUqpT59+lz13R555BF98skn+vzzz3XPPfdo1KhReuGFF2x9lixZourVq6tRo0a27+/KaQgTJ07UwYMH9c4772jZsmUKCQnJ96zy5ctr0aJF2rJliy0JPHfunO677z5VrlxZ77zzTqHe09/fX08//bS++eYbrVq16rr9DcPQxYsXdfHiRWVkZGj16tWaMWOGWrZsqWrVqhXqmQBwVQYAh0lNTTUkGffff3+h+icnJxuSjOHDh9u1b9q0yZBkPPnkk7a2Vq1aGZKMTZs22fWtW7eu0alTJ7s2ScaIESPs2iZNmmQU9D8B8+bNMyQZ+/fvNwzDMD799FNDkpGUlHTN2CUZkyZNsn2+//77DR8fH+PgwYN2/bp06WKULl3aOH36tGEYhrF69WpDktG1a1e7fp988okhydi4ceM1n3s53i1bttjutXv3bsMwDKNp06bGwIEDDcMwjFtvvdVo1arVVe+Tm5tr5OTkGM8//7wRHBxs5OXl2c5d7drLz7vrrruuem716tV27VOnTjUkGUuWLDEGDBhg+Pn5GTt37rzmO175ntnZ2Ub16tWNJk2a2OJs1aqVceutt9pdU6VKFUNSvqNZs2ZGSkrKdZ8JANdDRRJwIatXr5akfIs6mjVrpjp16uj777+3aw8LC1OzZs3s2ho0aFDgql6zGjZsKG9vbw0dOlQLFizQH3/8UajrVq1apXbt2uWrxA4cOFDnzp3LVxn9+/C+dOk9JBXpXVq1aqUaNWro/fff165du7Rly5arDmtfjrF9+/ayWq3y8PCQl5eXnn32WZ08eVLHjh0r9HPvvffeQvcdP3687r77bvXt21cLFizQm2++qfr16xf6eunSdIgXX3xRW7du1SeffHLNvnfccYe2bNmiLVu26Mcff9TcuXN1/PhxtW3blpXbAP4xEknAgcqXL6/SpUtr//79hep/8uRJSVLFihXznQsPD7edvyw4ODhfPx8fH2VlZZmItmA1atTQd999p5CQEI0YMUI1atRQjRo19Prrr1/zupMnT171PS6f/7sr3+XyfNKivIvFYtFDDz2kDz/8UO+8845q166tO++8s8C+mzdvVseOHSVdWlX/448/asuWLXrqqaeK/NyC3vNaMQ4cOFDnz59XWFhYoedGXun+++/X7bffrqeeespuzuWVrFarmjRpoiZNmig6OlqDBg3SRx99pOTkZL366qumng0Al5FIAg7k4eGhdu3aadu2bfkWyxTkcjKVkpKS79yRI0dUvnz5YovN19dX0qXtZP6uoCrVnXfeqWXLlik9PV2JiYmKiopSbGysFi1adNX7BwcHX/U9JBXru/zdwIEDdeLECb3zzjt66KGHrtpv0aJF8vLy0vLly9W7d29FR0erSZMmpp5Z0KKlq0lJSdGIESPUsGFDnTx5UuPGjTP9zKlTp+r333/Xu+++W6RrL1d7f/rpJ1PPBoDLSCQBB5s4caIMw9CQIUMKXJySk5OjZcuWSZLatm0rSbbFMpdt2bJFycnJateuXbHFdXnl8c6dO+3aL8dSEA8PDzVv3lxvvfWWJGn79u1X7duuXTutWrXKljhe9sEHH6h06dIO2y6oUqVKGj9+vLp3764BAwZctZ/FYpGnp6c8PDxsbVlZWQXuz1hcVd7c3Fz17dtXFotFX3/9teLi4vTmm2/q888/N3W/9u3bq0OHDnr++eeVkZFR6OuSkpIkqcBFQQBQFOwjCThYVFSUZs2apeHDh6tx48Z69NFHdeuttyonJ0c7duzQu+++q3r16ql79+6KjIzU0KFD9eabb6pUqVLq0qWLDhw4oGeeeUYRERF6/PHHiy2url27KigoSIMHD9bzzz8vT09PzZ8/X4cOHbLr984772jVqlW6++67VblyZZ0/f962Mrp9+/ZXvf+kSZO0fPlytWnTRs8++6yCgoIUHx+vr776StOmTbNtQeMIL7/88nX73H333XrttdfUr18/DR06VCdPntQrr7xS4BZN9evX16JFi7R48WJVr15dvr6+RZ7XKF36TtatW6dvv/1WYWFhGjt2rNauXavBgwerUaNGplZRT506VY0bN9axY8d066235jt/+vRpJSYmSrr0Hy3JycmaMmWKfHx8NGLEiCI/DwD+jkQSuAGGDBmiZs2aafr06Zo6dapSU1Pl5eWl2rVrq1+/fho5cqSt76xZs1SjRg3NnTtXb731lqxWqzp37qy4uLgC50SaFRAQoISEBMXGxuqBBx5QuXLl9PDDD6tLly56+OGHbf0aNmyob7/9VpMmTVJqaqrKli2revXqaenSpbY5hgWJjIzUhg0b9OSTT2rEiBHKyspSnTp1NG/evCL9QoyjtG3bVu+//76mTp2q7t27q1KlShoyZIhCQkI0ePBgu77PPfecUlJSNGTIEJ09e1ZVqlSx22ezMFauXKm4uDg988wzdpXl+fPnq1GjRurTp4/Wr18vb2/vIt23UaNG6tu3rz766KMCz//444+KioqSdKmiXKlSJTVr1kxPPfWUGjZsWKRnAcCVLIbxt513AQAAgEJijiQAAABMIZEEAACAKSSSAAAAMIVEEgAAAKaQSAIAAMAUEkkAAACYQiIJAAAAU0rkhuR+zcc7OwQADnJi3TRnhwDAQcp4F/5364ubX6OR1+9kUtaOmQ67t7NRkQQAAIApJbIiCQAAUCQWamtmkEgCAABYnDesfjMj/QYAAIApVCQBAAAY2jaFbw0AAACmUJEEAABgjqQpVCQBAABgChVJAAAA5kiawrcGAAAAU6hIAgAAMEfSFBJJAAAAhrZN4VsDAACAKVQkAQAAGNo2hYokAAAATKEiCQAAwBxJU/jWAAAAYAoVSQAAAOZImkJFEgAAAKZQkQQAAGCOpCkkkgAAAAxtm0L6DQAAAFOoSAIAADC0bQrfGgAAAEyhIgkAAEBF0hS+NQAAAJhCRRIAAKAUq7bNoCIJAAAAU6hIAgAAMEfSFBJJAAAANiQ3hfQbAAAAplCRBAAAYGjbFL41AAAAmEJFEgAAgDmSplCRBAAAgClUJAEAAJgjaQrfGgAAAEyhIgkAAMAcSVNIJAEAABjaNoVvDQAAAKaQSAIAAFgsjjv+gbi4OFksFsXGxtraDMPQ5MmTFR4eLj8/P7Vu3Vp79uyxuy47O1ujRo1S+fLlVaZMGfXo0UOHDx+265OWlqaYmBhZrVZZrVbFxMTo9OnTRYqPRBIAAMAFbdmyRe+++64aNGhg1z5t2jS99tprmjlzprZs2aKwsDB16NBBZ8+etfWJjY3VkiVLtGjRIq1fv14ZGRnq1q2bcnNzbX369eunpKQkJSQkKCEhQUlJSYqJiSlSjCSSAAAAllKOO0zIyMhQ//79NWfOHAUGBtraDcPQjBkz9NRTT+mee+5RvXr1tGDBAp07d04fffSRJCk9PV1z587Vq6++qvbt26tRo0b68MMPtWvXLn333XeSpOTkZCUkJOi9995TVFSUoqKiNGfOHC1fvlx79+4tdJwkkgAAAA6UnZ2tM2fO2B3Z2dnXvGbEiBG6++671b59e7v2/fv3KzU1VR07drS1+fj4qFWrVtqwYYMkadu2bcrJybHrEx4ernr16tn6bNy4UVarVc2bN7f1adGihaxWq61PYZBIAgAAOHCOZFxcnG0e4uUjLi7uqqEsWrRI27dvL7BPamqqJCk0NNSuPTQ01HYuNTVV3t7edpXMgvqEhITku39ISIitT2Gw/Q8AAIADTZw4UWPGjLFr8/HxKbDvoUOH9Nhjj+nbb7+Vr6/vVe9puWIRj2EY+dqudGWfgvoX5j5/R0USAADAgXMkfXx8FBAQYHdcLZHctm2bjh07psaNG8vT01Oenp5au3at3njjDXl6etoqkVdWDY8dO2Y7FxYWpgsXLigtLe2afY4ePZrv+cePH89X7bwWEkkAAAAXWWzTrl077dq1S0lJSbajSZMm6t+/v5KSklS9enWFhYVp5cqVtmsuXLigtWvXKjo6WpLUuHFjeXl52fVJSUnR7t27bX2ioqKUnp6uzZs32/ps2rRJ6enptj6FwdA2AACAi/D391e9evXs2sqUKaPg4GBbe2xsrKZMmaJatWqpVq1amjJlikqXLq1+/fpJkqxWqwYPHqyxY8cqODhYQUFBGjdunOrXr29bvFOnTh117txZQ4YM0ezZsyVJQ4cOVbdu3RQZGVnoeEkkAQAAbqLf2p4wYYKysrI0fPhwpaWlqXnz5vr222/l7+9v6zN9+nR5enqqd+/eysrKUrt27TR//nx5eHjY+sTHx2v06NG21d09evTQzJkzixSLxTAMo3hey3X4NR/v7BAAOMiJddOcHQIABynj7bxkzq/HLIfdO2vpow67t7NRkQQAADC5cbi741sDAACAKVQkAQAAbqI5kq6EiiQAAABMoSIJAADAHElTSCQBAAAY2jaF9BsAAACmUJEEAABuz0JF0hQqkgAAADCFiiQAAHB7VCTNoSIJAAAAU6hIAgAAUJA0hYokAAAATKEiCQAA3B5zJM0hkQQAAG6PRNIchrYBAABgChVJAADg9qhImkNFEgAAAKZQkQQAAG6PiqQ5VCQBAABgChVJAAAACpKmUJEEAACAKVQkAQCA22OOpDlUJAEAAGAKFUkAAOD2qEiaQyIJAADcHomkOQxtAwAAwBQqkgAAwO1RkTSHiiQAAABMoSIJAABAQdIUKpIAAAAwhYokAABwe8yRNIeKJAAAAEyhIgkAANweFUlzSCQBAIDbI5E0h6FtAAAAmEJFEgAAgIKkKVQkAQAAYAoVSQAA4PaYI2kOFUkAAACY4jKJ5Lp16/TAAw8oKipKf/31lyRp4cKFWr9+vZMjAwAAJZ3FYnHYUZK5RCL52WefqVOnTvLz89OOHTuUnZ0tSTp79qymTJni5OgAAABQEJdIJF988UW98847mjNnjry8vGzt0dHR2r59uxMjAwAA7oCKpDkusdhm7969uuuuu/K1BwQE6PTp0zc+IAAA4FZKesLnKC5RkaxYsaJ+++23fO3r169X9erVnRARAAAArsclEslHHnlEjz32mDZt2iSLxaIjR44oPj5e48aN0/Dhw50dHgAAKOksDjxKMJcY2p4wYYLS09PVpk0bnT9/XnfddZd8fHw0btw4jRw50tnhAQAAoAAukUhK0ksvvaSnnnpKP//8s/Ly8lS3bl2VLVvW2WEBAAA3wBxJc1xiaHvBggXKzMxU6dKl1aRJEzVr1owkEgAAwMW5RCI5btw4hYSE6P7779fy5ct18eJFZ4cEAADcCNv/mOMSiWRKSooWL14sDw8P3X///apYsaKGDx+uDRs2ODs0AAAAXIVLJJKenp7q1q2b4uPjdezYMc2YMUN//vmn2rRpoxo1ajg7PAAAUMK5SkVy1qxZatCggQICAhQQEKCoqCh9/fXXtvMDBw7Md/8WLVrY3SM7O1ujRo1S+fLlVaZMGfXo0UOHDx+265OWlqaYmBhZrVZZrVbFxMSY2rvbJRLJvytdurQ6deqkLl26qFatWjpw4ICzQwIAACWdi2z/c8stt+jll1/W1q1btXXrVrVt21Y9e/bUnj17bH06d+6slJQU27FixQq7e8TGxmrJkiVatGiR1q9fr4yMDHXr1k25ubm2Pv369VNSUpISEhKUkJCgpKQkxcTEFC1YudCq7XPnzmnJkiWKj4/Xd999p4iICPXt21f//e9/nR0aAADADdG9e3e7zy+99JJmzZqlxMRE3XrrrZIkHx8fhYWFFXh9enq65s6dq4ULF6p9+/aSpA8//FARERH67rvv1KlTJyUnJyshIUGJiYlq3ry5JGnOnDmKiorS3r17FRkZWeh4XSKR7Nu3r5YtW6bSpUvrvvvu05o1axQdHe3ssAAAgJtw5KKY7OxsZWdn27X5+PjIx8fnmtfl5ubqv//9rzIzMxUVFWVrX7NmjUJCQlSuXDm1atVKL730kkJCQiRJ27ZtU05Ojjp27GjrHx4ernr16mnDhg3q1KmTNm7cKKvVaksiJalFixayWq3asGFDkRJJlxjatlgsWrx4sY4cOaK33nqLJBIAAJQYcXFxtrmIl4+4uLir9t+1a5fKli0rHx8fDRs2TEuWLFHdunUlSV26dFF8fLxWrVqlV199VVu2bFHbtm1tiWpqaqq8vb0VGBhod8/Q0FClpqba+lxOPP8uJCTE1qewXKIi+dFHHzk7BAAA4MYcWZGcOHGixowZY9d2rWpkZGSkkpKSdPr0aX322WcaMGCA1q5dq7p166pPnz62fvXq1VOTJk1UpUoVffXVV7rnnnuuek/DMOzesaD3vbJPYTgtkXzjjTc0dOhQ+fr66o033rhm39GjR9+gqAAAAIpXYYax/87b21s1a9aUJDVp0kRbtmzR66+/rtmzZ+frW7FiRVWpUkX79u2TJIWFhenChQtKS0uzq0oeO3bMNuIbFhamo0eP5rvX8ePHFRoaWqR3c1oiOX36dPXv31++vr6aPn36VftZLBYSSTcybkAbvTC8q2YuWqfx05fK06OUJg/rrE7R/1K1SsE6k5GlVVt+0zNvrVDKiTN21zavV0WTH+2sprdWVs7FXO389Yh6Pv6ezmdfVOWKgZo4qL1aN6mp0CB/pZw4o48TtmvqvO+VczH3KtEAKG53d2qrlCNH8rXf16efxj0xUW+/+bp+XLdWh/86rLJly6p5i2iNjh2jCiH/9y+3z/67WAkrluuX5J+VmZmptT9uln9AwI18DZRArrxxuGEY+eZYXnby5EkdOnRIFStWlCQ1btxYXl5eWrlypXr37i3p0n7du3fv1rRp0yRJUVFRSk9P1+bNm9WsWTNJ0qZNm5Senl7k6YVOSyT3799f4J/hvhrXuUWDe7XQzn3/9y+Z0r7eahhZSS+//5127ktRYICf/vfxHvrvKwN1x8D/q2Q3r1dFX74+WK8sWK0xr3yhCxdz1aBWReXlGZKkyCohKlXKopEvf6bfD53QrTXC9NaT/1EZP29NfGP5DX9XwF19+PGnys37v/94+33fPj06dJA6dOqk8+fP65fkn/XwI8NVOzJSZ86c0SvT4hQ7arjiF39mu+b8+fOKbnmnolveqTdff80ZrwE4zJNPPqkuXbooIiJCZ8+e1aJFi7RmzRolJCQoIyNDkydP1r333quKFSvqwIEDevLJJ1W+fHn9+9//liRZrVYNHjxYY8eOVXBwsIKCgjRu3DjVr1/ftoq7Tp066ty5s4YMGWKrcg4dOlTdunUr0kIbyUXmSD7//PMaN26cSpcubdeelZWl//3f/9Wzzz7rpMhwo5Tx89a85/tp+JRP9T8PtbO1n8k8r26j59j1HfPKF1o//zFFhJbToaOnJUnTHu+utz/5Ua98sNrW7/dDJ2x/Xpm4VysT99o+HzhySrXj12rIPVEkksANFBgUZPd53tw5uiWisho3aSaLxaJZc963O//ExKcV0/c+paQcUcWK4ZKk/jEDJElbt2y6MUHDLbhKRfLo0aOKiYlRSkqKrFarGjRooISEBHXo0EFZWVnatWuXPvjgA50+fVoVK1ZUmzZttHjxYvn7+9vuMX36dHl6eqp3797KyspSu3btNH/+fHl4eNj6xMfHa/To0bbV3T169NDMmTOLHK9LJJLPPfechg0bli+RPHfunJ577jkSSTcwY/y/lfBjslZv2WeXSBYkoKyf8vLydDojS5JUIbCMmtWrokUJO7R6zghVuyVYvx44psnvJGjDTweufp8yvjp15lxxvgaAIsjJuaCvly9V/wcHXvVf4hlnz8piscjfn6FrOJhr5JGaO3fuVc/5+fnpm2++ue49fH199eabb+rNN9+8ap+goCB9+OGHpmL8O5fY/udqq4R++uknBV3xX69Xys7O1pkzZ+wOI++io0KFA9zX4TY1jKykZ97++rp9fbw99cKILlr8TZLOZl6aL1KtUrAk6akhHfT+l5vU87H3lLT3L62Y+YhqRJQv8D7VKgXr0d4t9d7nicX3IgCKZPX33+vs2bPq0fPfBZ7Pzs7WGzNeVeeu3VS2bNkbHB2AwnBqRTIwMND2O5G1a9e2SyZzc3OVkZGhYcOGXfMecXFxeu655+zaPMKj5HVLS4fEjOJ1S4hV/zump7qPnqPsC9f+DwBPj1Ja+GJ/lbJY9Nj/fm5rL/X///9m7pJELVy+VZL0069H1LpJLQ3o3lTPXpGgViwfoKWvD9bn3+/U/KWbi/mNABTWF0s+VfQdd9otpLksJydHE8ePkWEYmvj0JCdEB3fjKkPbNxunJpIzZsyQYRgaNGiQnnvuOVmtVts5b29vVa1a1W4n94IUtDdTSDv+R+dm0ehftyg0yF8b5j9ma/P09NAdjapp2H+iZb1zovLyDHl6lFL8lBhVCQ9Sl+GzbdVISbbV28n7j9nde++Bo4oILWfXVrF8gBLefkSbdh3UiLjPBMA5jhz5S5sTN+qV6fmH3nJycvQ/4x7XX38d1uy586lGAi7MqYnkgAGXJkxXq1ZN0dHR8vLyKvI9CtqbyVLKJaZ+ohBWb/1Njfu+Ytf27jN9tPfPY3r1g9V2SWSNiPLqPPydfPMa/0xJ05Fj6apdpYJde83KFfTtxl9sn8MrBCjh7WHa8cthDX1hsQzDcNyLAbimpV98rqCgYN1xVyu79stJ5MGDf+rduQtUrlzgVe4AFC8qkuY4LeM6c+aMAv7/vl+NGjVSVlaWsrKyCuwbwP5gJVbGuWz9/If9pqiZWRd0Kv2cfv7jqDw8Sumjlx9Uo8hKumfs+/IoVUqhQZdWpp06c862B+T0+DV6ekhH7dp3RD/9ekQP3N1EkVVC1G/iQkmXKpHfzBqmQ6mnNfGN5apQ7v8qHEdPnb1BbwtAkvLy8rT0iyXq1qOXPD3/719DFy9e1IQxj+mX5J/1+lvvKDcvVydOHJd0aUsTLy9vSdKJE8d18sQJHTp4UJK0b9+vKlOmjMIqVpTVWu6Gvw/gzpyWSAYGBiolJcX2o+PX+qme3Fw2jHZXlUKs6n7XrZKkzR/aT2Ho+Ogsrdv+hyRp5qL18vX20rTYHgoMKK1d+46o2+h3tf+vk5Kkds1rq2ZEBdWMqKDflz9jdx+/5uNvwJsAuGxT4galphxRz3/b/5zbsaOpWrtmlSTp/v/0sjv37vsL1KRpc0nSp58s0ruz3rKde3jgA5KkyS9MUY9eV/+JOOBaKEiaYzGcNL63du1atWzZUp6enlq7du01+7Zq1eqa569EYgCUXCfWTXN2CAAcpIy387K5muOuv3OIWb+90sVh93Y2p1Uk/54cFjVRBAAAKE7MkTTHJfaRTEhI0Pr1622f33rrLTVs2FD9+vVTWlqaEyMDAADuwGJx3FGSuUQiOX78eJ05c2kLl127dmnMmDHq2rWr/vjjj3xb+wAAAMA1uMQ+Ofv371fdunUlSZ999pm6d++uKVOmaPv27eratauTowMAACUdQ9vmuERF0tvbW+fOXdob8LvvvrP9gHhQUJCtUgkAAADX4hIVyTvuuENjxoxRy5YttXnzZi1evFiS9Ouvv+qWW25xcnQAAKCkoyBpjktUJGfOnClPT099+umnmjVrlipVqiRJ+vrrr9W5c2cnRwcAAICCuERFsnLlylq+fHm+9unTpzshGgAA4G5KlaIkaYZLJJKSlJubqy+++ELJycmyWCyqU6eOevbsKQ8PD2eHBgAAgAK4RCL522+/qWvXrvrrr78UGRkpwzD066+/KiIiQl999ZVq1Kjh7BABAEAJxhxJc1xijuTo0aNVo0YNHTp0SNu3b9eOHTt08OBBVatWTaNHj3Z2eAAAoISzWCwOO0oyl6hIrl27VomJiQoKCrK1BQcH6+WXX1bLli2dGBkAAACuxiUSSR8fH509ezZfe0ZGhry9vZ0QEQAAcCclvHDoMC4xtN2tWzcNHTpUmzZtkmEYMgxDiYmJGjZsmHr06OHs8AAAAFAAl0gk33jjDdWoUUNRUVHy9fWVr6+voqOjVbNmTb3++uvODg8AAJRwzJE0xyWGtsuVK6cvv/xSv/32m37++WdJUt26dVWzZk0nRwYAAICrcYlEUpLmzp2r6dOna9++fZKkWrVqKTY2Vg8//LCTIwMAACVdSa8cOopLJJLPPPOMpk+frlGjRikqKkqStHHjRj3++OM6cOCAXnzxRSdHCAAAgCu5RCI5a9YszZkzR3379rW19ejRQw0aNNCoUaNIJAEAgENRkDTHJRLJ3NxcNWnSJF9748aNdfHiRSdEBAAA3AlD2+a4xKrtBx54QLNmzcrX/u6776p///5OiAgAAADX4xIVSenSYptvv/1WLVq0kCQlJibq0KFDevDBBzVmzBhbv9dee81ZIQIAgBKKgqQ5LpFI7t69W7fffrsk6ffff5ckVahQQRUqVNDu3btt/Sg7AwAAuA6XSCRXr17t7BAAAIAbo1hljkvMkQQAAMDNxyUqkgAAAM5EQdIcKpIAAAAwhYokAABwe8yRNIeKJAAAAEyhIgkAANweBUlzSCQBAIDbY2jbHIa2AQAAYAoVSQAA4PYoSJpDRRIAAACmUJEEAABujzmS5lCRBAAAgClUJAEAgNujIGkOFUkAAACYQkUSAAC4PeZImkMiCQAA3B55pDkMbQMAAMAUKpIAAMDtMbRtDhVJAAAAmEJFEgAAuD0qkuZQkQQAAIApJJIAAMDtWSyOO4pi1qxZatCggQICAhQQEKCoqCh9/fXXtvOGYWjy5MkKDw+Xn5+fWrdurT179tjdIzs7W6NGjVL58uVVpkwZ9ejRQ4cPH7brk5aWppiYGFmtVlmtVsXExOj06dNF/t5IJAEAAFzELbfcopdffllbt27V1q1b1bZtW/Xs2dOWLE6bNk2vvfaaZs6cqS1btigsLEwdOnTQ2bNnbfeIjY3VkiVLtGjRIq1fv14ZGRnq1q2bcnNzbX369eunpKQkJSQkKCEhQUlJSYqJiSlyvBbDMIx//tquxa/5eGeHAMBBTqyb5uwQADhIGW/nzVNsPWODw+79zaONlZ2dbdfm4+MjHx+fQl0fFBSk//3f/9WgQYMUHh6u2NhYPfHEE5IuVR9DQ0M1depUPfLII0pPT1eFChW0cOFC9enTR5J05MgRRUREaMWKFerUqZOSk5NVt25dJSYmqnnz5pKkxMRERUVF6ZdfflFkZGSh342KJAAAcHuOHNqOi4uzDSFfPuLi4q4bU25urhYtWqTMzExFRUVp//79Sk1NVceOHW19fHx81KpVK23YcCkR3rZtm3Jycuz6hIeHq169erY+GzdulNVqtSWRktSiRQtZrVZbn8Ji1TYAAIADTZw4UWPGjLFru1Y1cteuXYqKitL58+dVtmxZLVmyRHXr1rUleaGhoXb9Q0ND9eeff0qSUlNT5e3trcDAwHx9UlNTbX1CQkLyPTckJMTWp7BIJAEAgNtz5PY/RRnGlqTIyEglJSXp9OnT+uyzzzRgwACtXbvWdv7KWA3DuG78V/YpqH9h7nMlhrYBAABciLe3t2rWrKkmTZooLi5Ot912m15//XWFhYVJUr6q4bFjx2xVyrCwMF24cEFpaWnX7HP06NF8zz1+/Hi+auf1kEgCAAC35yrb/xTEMAxlZ2erWrVqCgsL08qVK23nLly4oLVr1yo6OlqS1LhxY3l5edn1SUlJ0e7du219oqKilJ6ers2bN9v6bNq0Senp6bY+hcXQNgAAgIt48skn1aVLF0VEROjs2bNatGiR1qxZo4SEBFksFsXGxmrKlCmqVauWatWqpSlTpqh06dLq16+fJMlqtWrw4MEaO3asgoODFRQUpHHjxql+/fpq3769JKlOnTrq3LmzhgwZotmzZ0uShg4dqm7duhVpxbZEIgkAAKBSLvITiUePHlVMTIxSUlJktVrVoEEDJSQkqEOHDpKkCRMmKCsrS8OHD1daWpqaN2+ub7/9Vv7+/rZ7TJ8+XZ6enurdu7eysrLUrl07zZ8/Xx4eHrY+8fHxGj16tG11d48ePTRz5swix8s+kgBuKuwjCZRcztxHssPMRIfde+XIFg67t7NRkQQAAG7PRQqSNx0SSQAA4PYcuf1PScaqbQAAAJhCRRIAALi9UhQkTaEiCQAAAFOoSAIAALfHHElzqEgCAADAFCqSAADA7VGQNIeKJAAAAEyhIgkAANyeRZQkzSCRBAAAbo/tf8xhaBsAAACmUJEEAABuj+1/zKEiCQAAAFOoSAIAALdHQdIcKpIAAAAwpVgqkqdPn1a5cuWK41YAAAA3XClKkqYUuSI5depULV682Pa5d+/eCg4OVqVKlfTTTz8Va3AAAABwXUVOJGfPnq2IiAhJ0sqVK7Vy5Up9/fXX6tKli8aPH1/sAQIAADiaxeK4oyQr8tB2SkqKLZFcvny5evfurY4dO6pq1apq3rx5sQcIAADgaGz/Y06RK5KBgYE6dOiQJCkhIUHt27eXJBmGodzc3OKNDgAAAC6ryBXJe+65R/369VOtWrV08uRJdenSRZKUlJSkmjVrFnuAAAAAjkZB0pwiJ5LTp09X1apVdejQIU2bNk1ly5aVdGnIe/jw4cUeIAAAAFxTkRNJLy8vjRs3Ll97bGxsccQDAABww7H9jzmFSiSXLl1a6Bv26NHDdDAAAAC4eRQqkezVq1ehbmaxWFhwAwAAbjrUI80pVCKZl5fn6DgAAABwk/lHP5F4/vx5+fr6FlcsAAAATsE+kuYUeR/J3NxcvfDCC6pUqZLKli2rP/74Q5L0zDPPaO7cucUeIAAAgKOVsjjuKMmKnEi+9NJLmj9/vqZNmyZvb29be/369fXee+8Va3AAAABwXUVOJD/44AO9++676t+/vzw8PGztDRo00C+//FKswQEAANwIFovFYUdJVuRE8q+//irwF2zy8vKUk5NTLEEBAADA9RU5kbz11lu1bt26fO3//e9/1ahRo2IJCgAA4EayWBx3lGRFXrU9adIkxcTE6K+//lJeXp4+//xz7d27Vx988IGWL1/uiBgBAADggopckezevbsWL16sFStWyGKx6Nlnn1VycrKWLVumDh06OCJGAAAAh2KOpDmm9pHs1KmTOnXqVNyxAAAA4CZiekPyrVu3Kjk5WRaLRXXq1FHjxo2LMy4AAIAbpqTv9+goRU4kDx8+rL59++rHH39UuXLlJEmnT59WdHS0Pv74Y0VERBR3jAAAAA5V0oegHaXIcyQHDRqknJwcJScn69SpUzp16pSSk5NlGIYGDx7siBgBAADggopckVy3bp02bNigyMhIW1tkZKTefPNNtWzZsliDAwAAuBGoR5pT5Ipk5cqVC9x4/OLFi6pUqVKxBAUAAADXV+REctq0aRo1apS2bt0qwzAkXVp489hjj+mVV14p9gABAAAcrZTF4rCjJCvU0HZgYKDdJNTMzEw1b95cnp6XLr948aI8PT01aNAg9erVyyGBAgAAwLUUKpGcMWOGg8MAAABwnhJeOHSYQiWSAwYMcHQcAAAAuMmY3pBckrKysvItvAkICPhHAQEAANxo7CNpTpEX22RmZmrkyJEKCQlR2bJlFRgYaHcAAADAPRQ5kZwwYYJWrVqlt99+Wz4+Pnrvvff03HPPKTw8XB988IEjYgQAAHAoi8VxR0lW5KHtZcuW6YMPPlDr1q01aNAg3XnnnapZs6aqVKmi+Ph49e/f3xFxAgAAOExJ36bHUYpckTx16pSqVasm6dJ8yFOnTkmS7rjjDv3www/FGx0AAABcVpETyerVq+vAgQOSpLp16+qTTz6RdKlSWa5cueKMDQAA4IZgaNucIieSDz30kH766SdJ0sSJE21zJR9//HGNHz++2AMEAABwF3FxcWratKn8/f0VEhKiXr16ae/evXZ9Bg4cKIvFYne0aNHCrk92drZGjRql8uXLq0yZMurRo4cOHz5s1yctLU0xMTGyWq2yWq2KiYnR6dOnixRvkedIPv7447Y/t2nTRr/88ou2bt2qGjVq6Lbbbivq7QAAAJzOVbb/Wbt2rUaMGKGmTZvq4sWLeuqpp9SxY0f9/PPPKlOmjK1f586dNW/ePNtnb29vu/vExsZq2bJlWrRokYKDgzV27Fh169ZN27Ztk4eHhySpX79+Onz4sBISEiRJQ4cOVUxMjJYtW1boeP/RPpKSVLlyZVWuXFmHDh3SoEGD9P777//TWwIAALily0ndZfPmzVNISIi2bdumu+66y9bu4+OjsLCwAu+Rnp6uuXPnauHChWrfvr0k6cMPP1RERIS+++47derUScnJyUpISFBiYqKaN28uSZozZ46ioqK0d+9eRUZGFiref5xIXnbq1CktWLDAJRLJtB//19khAHCQwKYjnR0CAAfJ2jHTac8u8ly/IsjOzlZ2drZdm4+Pj3x8fK57bXp6uiQpKCjIrn3NmjUKCQlRuXLl1KpVK7300ksKCQmRJG3btk05OTnq2LGjrX94eLjq1aunDRs2qFOnTtq4caOsVqstiZSkFi1ayGq1asOGDYVOJB35vQEAALi9uLg42zzEy0dcXNx1rzMMQ2PGjNEdd9yhevXq2dq7dOmi+Ph4rVq1Sq+++qq2bNmitm3b2pLV1NRUeXt75/uhmNDQUKWmptr6XE48/y4kJMTWpzCKrSIJAABws3LkHMmJEydqzJgxdm2FqUaOHDlSO3fu1Pr16+3a+/TpY/tzvXr11KRJE1WpUkVfffWV7rnnnqvezzAMu/cs6J2v7HM9JJIAAMDtlXLgWpvCDmP/3ahRo7R06VL98MMPuuWWW67Zt2LFiqpSpYr27dsnSQoLC9OFCxeUlpZmV5U8duyYoqOjbX2OHj2a717Hjx9XaGhooeMsdCJ5rQxXUpGXiwMAAMCeYRgaNWqUlixZojVr1th+BOZaTp48qUOHDqlixYqSpMaNG8vLy0srV65U7969JUkpKSnavXu3pk2bJkmKiopSenq6Nm/erGbNmkmSNm3apPT0dFuyWRiFTiStVut1zz/44IOFfjAAAICrcGRFsihGjBihjz76SF9++aX8/f1t8xWtVqv8/PyUkZGhyZMn695771XFihV14MABPfnkkypfvrz+/e9/2/oOHjxYY8eOVXBwsIKCgjRu3DjVr1/ftoq7Tp066ty5s4YMGaLZs2dLurT9T7du3Qq90EYqQiL5972KAAAAUPxmzZolSWrdurVd+7x58zRw4EB5eHho165d+uCDD3T69GlVrFhRbdq00eLFi+Xv72/rP336dHl6eqp3797KyspSu3btNH/+fNsekpIUHx+v0aNH21Z39+jRQzNnFm3lvMUwDMPku7qs8xedHQEAR2H7H6Dkcub2P2OX7b1+J5Ne7V74Ct/Nhu1/AAAAYAqrtgEAgNtzlTmSNxsqkgAAADCFiiQAAHB7DtyPvEQzVZFcuHChWrZsqfDwcP3555+SpBkzZujLL78s1uAAAABuhFIWi8OOkqzIieSsWbM0ZswYde3aVadPn1Zubq4kqVy5cpoxY0ZxxwcAAAAXVeRE8s0339ScOXP01FNP2e1F1KRJE+3atatYgwMAALgRSjnwKMmK/H779+9Xo0aN8rX7+PgoMzOzWIICAACA6ytyIlmtWjUlJSXla//6669Vt27d4ogJAADghrJYHHeUZEVetT1+/HiNGDFC58+fl2EY2rx5sz7++GPFxcXpvffec0SMAAAAcEFFTiQfeughXbx4URMmTNC5c+fUr18/VapUSa+//rruv/9+R8QIAADgUCV9dbWjmNpHcsiQIRoyZIhOnDihvLw8hYSEFHdcAAAAcHH/aEPy8uXLF1ccAAAATkNB0pwiJ5LVqlWT5Rrf9h9//PGPAgIAALjR+K1tc4qcSMbGxtp9zsnJ0Y4dO5SQkKDx48cXV1wAAABwcUVOJB977LEC29966y1t3br1HwcEAABwo7HYxpxi23C9S5cu+uyzz4rrdgAAAHBx/2ixzd99+umnCgoKKq7bAQAA3DAUJM0pciLZqFEju8U2hmEoNTVVx48f19tvv12swQEAAMB1FTmR7NWrl93nUqVKqUKFCmrdurX+9a9/FVdcAAAANwyrts0pUiJ58eJFVa1aVZ06dVJYWJijYgIAAMBNoEiLbTw9PfXoo48qOzvbUfEAAADccBYH/lOSFXnVdvPmzbVjxw5HxAIAAOAUpSyOO0qyIs+RHD58uMaOHavDhw+rcePGKlOmjN35Bg0aFFtwAAAAcF2FTiQHDRqkGTNmqE+fPpKk0aNH285ZLBYZhiGLxaLc3NzijxIAAMCBSnrl0FEKnUguWLBAL7/8svbv3+/IeAAAAHCTKHQiaRiGJKlKlSoOCwYAAMAZLOxIbkqRFtvwJQMAAOCyIi22qV279nWTyVOnTv2jgAAAAG405kiaU6RE8rnnnpPVanVULAAAALiJFCmRvP/++xUSEuKoWAAAAJyC2XvmFDqRZH4kAAAoqUqR55hS6MU2l1dtAwAAAFIRKpJ5eXmOjAMAAMBpWGxjTpF/axsAAACQTPzWNgAAQEnDFElzqEgCAADAFCqSAADA7ZUSJUkzqEgCAADAFCqSAADA7TFH0hwSSQAA4PbY/scchrYBAABgChVJAADg9viJRHOoSAIAAMAUKpIAAMDtUZA0h4okAAAATKEiCQAA3B5zJM2hIgkAAABTqEgCAAC3R0HSHBJJAADg9hiiNYfvDQAAAKaQSAIAALdnsVgcdhRFXFycmjZtKn9/f4WEhKhXr17au3evXR/DMDR58mSFh4fLz89PrVu31p49e+z6ZGdna9SoUSpfvrzKlCmjHj166PDhw3Z90tLSFBMTI6vVKqvVqpiYGJ0+fbpI8ZJIAgAAuIi1a9dqxIgRSkxM1MqVK3Xx4kV17NhRmZmZtj7Tpk3Ta6+9ppkzZ2rLli0KCwtThw4ddPbsWVuf2NhYLVmyRIsWLdL69euVkZGhbt26KTc319anX79+SkpKUkJCghISEpSUlKSYmJgixWsxDMP456/tWs5fdHYEABwlsOlIZ4cAwEGydsx02rM/2HrIYfd+sEmE6WuPHz+ukJAQrV27VnfddZcMw1B4eLhiY2P1xBNPSLpUfQwNDdXUqVP1yCOPKD09XRUqVNDChQvVp08fSdKRI0cUERGhFStWqFOnTkpOTlbdunWVmJio5s2bS5ISExMVFRWlX375RZGRkYWKj4okAACAA2VnZ+vMmTN2R3Z2dqGuTU9PlyQFBQVJkvbv36/U1FR17NjR1sfHx0etWrXShg0bJEnbtm1TTk6OXZ/w8HDVq1fP1mfjxo2yWq22JFKSWrRoIavVautTGCSSAADA7ZWyWBx2xMXF2eYhXj7i4uKuG5NhGBozZozuuOMO1atXT5KUmpoqSQoNDbXrGxoaajuXmpoqb29vBQYGXrNPSEhIvmeGhITY+hQG2/8AAAA40MSJEzVmzBi7Nh8fn+teN3LkSO3cuVPr16/Pd+7KRTyGYVx3Yc+VfQrqX5j7/B0VSQAA4PYsDjx8fHwUEBBgd1wvkRw1apSWLl2q1atX65ZbbrG1h4WFSVK+quGxY8dsVcqwsDBduHBBaWlp1+xz9OjRfM89fvx4vmrntZBIAgAAt2exOO4oCsMwNHLkSH3++edatWqVqlWrZne+WrVqCgsL08qVK21tFy5c0Nq1axUdHS1Jaty4sby8vOz6pKSkaPfu3bY+UVFRSk9P1+bNm219Nm3apPT0dFufwmBoGwAAwEWMGDFCH330kb788kv5+/vbKo9Wq1V+fn6yWCyKjY3VlClTVKtWLdWqVUtTpkxR6dKl1a9fP1vfwYMHa+zYsQoODlZQUJDGjRun+vXrq3379pKkOnXqqHPnzhoyZIhmz54tSRo6dKi6detW6BXbEokkAABAkTcOd5RZs2ZJklq3bm3XPm/ePA0cOFCSNGHCBGVlZWn48OFKS0tT8+bN9e2338rf39/Wf/r06fL09FTv3r2VlZWldu3aaf78+fLw8LD1iY+P1+jRo22ru3v06KGZM4u2BRP7SAK4qbCPJFByOXMfyY93/OWwe/dtVMlh93Y2KpIAAMDtsWjEHL43AAAAmEJFEgAAuD1XmSN5s6EiCQAAAFOoSAIAALdHPdIcKpIAAAAwhYokAABwe8yRNIdEEgAAuD2GaM3hewMAAIApVCQBAIDbY2jbHCqSAAAAMIWKJAAAcHvUI82hIgkAAABTqEgCAAC3xxRJc6hIAgAAwBQqkgAAwO2VYpakKSSSAADA7TG0bQ5D2wAAADDFpRLJCxcuaO/evbp48aKzQwEAAG7E4sB/SjKXSCTPnTunwYMHq3Tp0rr11lt18OBBSdLo0aP18ssvOzk6AAAAFMQlEsmJEyfqp59+0po1a+Tr62trb9++vRYvXuzEyAAAgDuwWBx3lGQusdjmiy++0OLFi9WiRQu737qsW7eufv/9dydGBgAAgKtxiUTy+PHjCgkJydeemZnJj6gDAACHY/sfc1xiaLtp06b66quvbJ8vJ49z5sxRVFSUs8ICAADANbhERTIuLk6dO3fWzz//rIsXL+r111/Xnj17tHHjRq1du9bZ4QEAgBKOAVBzXKIiGR0drR9//FHnzp1TjRo19O233yo0NFQbN25U48aNnR0eAAAo4VhsY45LVCQlqX79+lqwYIGzwwAAAEAhuURFsk2bNpo7d67S09OdHQoAAHBDbEhujkskkvXr19fTTz+tsLAw3Xvvvfriiy904cIFZ4cFAACAa3CJRPKNN97QX3/9pS+//FL+/v4aMGCAwsLCNHToUBbbAAAAhytlcdxRkrlEIilJpUqVUseOHTV//nwdPXpUs2fP1ubNm9W2bVtnhwYAAIACuMxim8tSU1O1aNEiffjhh9q5c6eaNm3q7JAAAEAJV9LnMjqKS1Qkz5w5o3nz5qlDhw6KiIjQrFmz1L17d/3666/atGmTs8MDAABAAVyiIhkaGqrAwED17t1bU6ZMoQoJAABuqJK+36OjuEQi+eWXX6p9+/YqVcolCqQAAMDNMLRtjkskkh07dnR2CAAAACgipyWSt99+u77//nsFBgaqUaNGslyjprx9+/YbGBkAAHA3JX2bHkdxWiLZs2dP+fj42P58rUQSAAAArsdiGIbh7CCK2/mLzo4AgKMENh3p7BAAOEjWjplOe/a6X9Mcdu87awc67N7O5hKrW6pXr66TJ0/maz99+rSqV6/uhIgAAABwPS6x2ObAgQPKzc3N156dna3Dhw87ISIAAOBOmGFnjlMTyaVLl9r+/M0338hqtdo+5+bm6vvvv1e1atWcERoAAACuw6mJZK9evSRJFotFAwYMsDvn5eWlqlWr6tVXX3VCZAAAwJ1QkDTHqYlkXl6eJKlatWrasmWLypcv78xwAACAmyrF2LYpLjFHcv/+/aavzc7OVnZ2tl2b4eFj21oIAAAAjuESiaQkZWZmau3atTp48KAuXLhgd2706NFXvS4uLk7PPfecXdtTz0zS089OdkSYAACgBKIeaY5L7CO5Y8cOde3aVefOnVNmZqaCgoJ04sQJlS5dWiEhIfrjjz+uei0VScC9sI8kUHI5cx/JxN9OO+zeLWqWc9i9nc0l9pF8/PHH1b17d506dUp+fn5KTEzUn3/+qcaNG+uVV1655rU+Pj4KCAiwO0giAQBAkVgceJRgLpFIJiUlaezYsfLw8JCHh4eys7MVERGhadOm6cknn3R2eAAAACiASySSXl5ett/aDg0N1cGDByVJVqvV9mcAAABHsTjwn5LMJRbbNGrUSFu3blXt2rXVpk0bPfvsszpx4oQWLlyo+vXrOzs8AAAAFMAlKpJTpkxRxYoVJUkvvPCCgoOD9eijj+rYsWN69913nRwdAAAo6SwWxx0lmUskkk2aNFGbNm0kSRUqVNCKFSt05swZbd++XbfddpuTowMAACWdK621+eGHH9S9e3eFh4fLYrHoiy++sDs/cOBAWSwWu6NFixZ2fbKzszVq1CiVL19eZcqUUY8ePXT48GG7PmlpaYqJiZHVapXValVMTIxOnz5dpFhdIpEEAADAJZmZmbrttts0c+bVt0Pq3LmzUlJSbMeKFSvszsfGxmrJkiVatGiR1q9fr4yMDHXr1k25ubm2Pv369VNSUpISEhKUkJCgpKQkxcTEFClWl5kjaSmg9muxWOTr66uaNWtq4MCBtqolAABAsXKhIeguXbqoS5cu1+zj4+OjsLCwAs+lp6dr7ty5Wrhwodq3by9J+vDDDxUREaHvvvtOnTp1UnJyshISEpSYmKjmzZtLkubMmaOoqCjt3btXkZGRhYrVJSqSnTt31h9//KEyZcqoTZs2at26tcqWLavff/9dTZs2VUpKitq3b68vv/zS2aECAAAUSXZ2ts6cOWN3XPljKkW1Zs0ahYSEqHbt2hoyZIiOHTtmO7dt2zbl5OSoY8eOtrbw8HDVq1dPGzZskCRt3LhRVqvVlkRKUosWLWS1Wm19CsMlEskTJ05o7NixWrdunV599VW99tpr+uGHHzRu3DhlZmbq22+/1dNPP60XXnjB2aECAIASyJHb/8TFxdnmIV4+4uLiTMfapUsXxcfHa9WqVXr11Ve1ZcsWtW3b1pacpqamytvbW4GBgXbXhYaGKjU11dYnJCQk371DQkJsfQrDJYa2P/nkE23bti1f+/3336/GjRtrzpw56tu3r1577TUnRAcAAGDexIkTNWbMGLu2f/IrfH369LH9uV69emrSpImqVKmir776Svfcc89VrzMMw24qYUHTCq/scz0uUZH09fUtsIy6YcMG+fr6SpLy8vL46UMAAOAQjtz+x9E/51yxYkVVqVJF+/btkySFhYXpwoULSktLs+t37NgxhYaG2vocPXo0372OHz9u61MYLlGRHDVqlIYNG6Zt27apadOmslgs2rx5s9577z3bTyR+8803atSokZMjBQAAcC0nT57UoUOHbHtyN27cWF5eXlq5cqV69+4tSUpJSdHu3bs1bdo0SVJUVJTS09O1efNmNWvWTJK0adMmpaenKzo6utDPthiGYRTz+5gSHx+vmTNnau/evZKkyMhIjRo1Sv369ZMkZWVl2VZxX8/5iw4NFYATBTYd6ewQADhI1o6rb3fjaNsPnHHYvW+vGlCk/hkZGfrtt98kXdrZ5rXXXlObNm0UFBSkoKAgTZ48Wffee68qVqyoAwcO6Mknn9TBgweVnJwsf39/SdKjjz6q5cuXa/78+QoKCtK4ceN08uRJbdu2TR4eHpIuzbU8cuSIZs+eLUkaOnSoqlSpomXLlhU6VpdJJIsTiSRQcpFIAiWXUxPJPx2YSFYpWiK5Zs2aArc8HDBggGbNmqVevXppx44dOn36tCpWrKg2bdrohRdeUEREhK3v+fPnNX78eH300UfKyspSu3bt9Pbbb9v1OXXqlEaPHq2lS5dKknr06KGZM2eqXLlyhY7VZRLJ06dP69NPP9Uff/yhcePGKSgoSNu3b1doaKgqVapUpHuRSAIlF4kkUHKRSN58XGKO5M6dO9W+fXtZrVYdOHBADz/8sIKCgrRkyRL9+eef+uCDD5wdIgAAKMEsrrQj+U3EJVZtjxkzRgMHDtS+ffvs5kB26dJFP/zwgxMjAwAAwNW4REVyy5Yttomef1epUqUibYoJAABgRhG2TsTfuERF0tfXV2fO5J+bsHfvXlWoUMEJEQEAAOB6XCKR7Nmzp55//nnl5ORIurTT+sGDB/U///M/uvfee50cHQAAKOksDjxKMpdIJF955RUdP35cISEhysrKUqtWrVSzZk2VLVtWL730krPDAwAAQAFcYo5kQECA1q9fr9WrV2vbtm3Ky8vT7bffrvbt2zs7NAAA4A5KeunQQVwikZSk77//Xt9//72OHTumvLw8/fLLL/roo48kSe+//76TowMAACUZ2/+Y4xKJ5HPPPafnn39eTZo0UcWKFWVh6RQAAIDLc4lE8p133tH8+fMVExPj7FAAAIAbooZljksstrlw4YKio6OdHQYAAACKwCUSyYcfftg2HxIAAOBGY/sfc1xiaPv8+fN699139d1336lBgwby8vKyO//aa685KTIAAABcjUskkjt37lTDhg0lSbt377Y7x8IbAADgcKQbprhEIrl69WpnhwAAAIAicolEEgAAwJnYR9Icl1hsAwAAgJsPFUkAAOD2WJJhDokkAABwe+SR5jC0DQAAAFOoSAIAAFCSNIWKJAAAAEyhIgkAANwe2/+YQ0USAAAAplCRBAAAbo/tf8yhIgkAAABTqEgCAAC3R0HSHBJJAAAAMklTGNoGAACAKVQkAQCA22P7H3OoSAIAAMAUKpIAAMDtsf2POVQkAQAAYAoVSQAA4PYoSJpDRRIAAACmUJEEAACgJGkKiSQAAHB7bP9jDkPbAAAAMIWKJAAAcHts/2MOFUkAAACYQkUSAAC4PQqS5lCRBAAAgClUJAEAAChJmkJFEgAAAKZQkQQAAG6PfSTNIZEEAABuj+1/zGFoGwAAAKZQkQQAAG6PgqQ5VCQBAABgChVJAADg9pgjaQ4VSQAAAJhCIgkAACCLA4+i+eGHH9S9e3eFh4fLYrHoiy++sDtvGIYmT56s8PBw+fn5qXXr1tqzZ49dn+zsbI0aNUrly5dXmTJl1KNHDx0+fNiuT1pammJiYmS1WmW1WhUTE6PTp08XKVYSSQAAABeSmZmp2267TTNnzizw/LRp0/Taa69p5syZ2rJli8LCwtShQwedPXvW1ic2NlZLlizRokWLtH79emVkZKhbt27Kzc219enXr5+SkpKUkJCghIQEJSUlKSYmpkixWgzDMMy9pus6f9HZEQBwlMCmI50dAgAHydpRcOJ0I/x1+oLD7l2pnLfpay0Wi5YsWaJevXpJulSNDA8PV2xsrJ544glJl6qPoaGhmjp1qh555BGlp6erQoUKWrhwofr06SNJOnLkiCIiIrRixQp16tRJycnJqlu3rhITE9W8eXNJUmJioqKiovTLL78oMjKyUPFRkQQAAG7PkQPb2dnZOnPmjN2RnZ1tKs79+/crNTVVHTt2tLX5+PioVatW2rBhgyRp27ZtysnJsesTHh6uevXq2fps3LhRVqvVlkRKUosWLWS1Wm19CoNEEgAAwIHi4uJs8xAvH3FxcabulZqaKkkKDQ21aw8NDbWdS01Nlbe3twIDA6/ZJyQkJN/9Q0JCbH0Kg+1/AACA23Pk9j8TJ07UmDFj7Np8fHz+0T0tVwRsGEa+titd2aeg/oW5z99RkQQAAHAgHx8fBQQE2B1mE8mwsDBJylc1PHbsmK1KGRYWpgsXLigtLe2afY4ePZrv/sePH89X7bwWEkkAAOD2LA78pzhVq1ZNYWFhWrlypa3twoULWrt2raKjoyVJjRs3lpeXl12flJQU7d6929YnKipK6enp2rx5s63Ppk2blJ6ebutTGAxtAwAAuJCMjAz99ttvts/79+9XUlKSgoKCVLlyZcXGxmrKlCmqVauWatWqpSlTpqh06dLq16+fJMlqtWrw4MEaO3asgoODFRQUpHHjxql+/fpq3769JKlOnTrq3LmzhgwZotmzZ0uShg4dqm7duhV6xbZEIgkAAGBm33CH2bp1q9q0aWP7fHl+5YABAzR//nxNmDBBWVlZGj58uNLS0tS8eXN9++238vf3t10zffp0eXp6qnfv3srKylK7du00f/58eXh42PrEx8dr9OjRttXdPXr0uOrelVfDPpIAbirsIwmUXM7cRzL1TI7D7h0W4OWwezsbFUkAAOD2XKggeVMhkQQAAG7Pkdv/lGSs2gYAAIApVCQBAIDbK+5tetwFFUkAAACYQkUSAACAgqQpVCQBAABgChVJAADg9ihImkNFEgAAAKZQkQQAAG6PfSTNIZEEAABuj+1/zGFoGwAAAKZQkQQAAG6PoW1zqEgCAADAFBJJAAAAmEIiCQAAAFOYIwkAANwecyTNoSIJAAAAU6hIAgAAt8c+kuaQSAIAALfH0LY5DG0DAADAFCqSAADA7VGQNIeKJAAAAEyhIgkAAEBJ0hQqkgAAADCFiiQAAHB7bP9jDhVJAAAAmEJFEgAAuD32kTSHiiQAAABMoSIJAADcHgVJc0gkAQAAyCRNYWgbAAAAplCRBAAAbo/tf8yhIgkAAABTqEgCAAC3x/Y/5lCRBAAAgCkWwzAMZwcBmJWdna24uDhNnDhRPj4+zg4HQDHi7zfg+kgkcVM7c+aMrFar0tPTFRAQ4OxwABQj/n4Dro+hbQAAAJhCIgkAAABTSCQBAABgCokkbmo+Pj6aNGkSE/GBEoi/34DrY7ENAAAATKEiCQAAAFNIJAEAAGAKiSQAAABMIZHETWnNmjWyWCw6ffr0NftVrVpVM2bMuCExAXCeyZMnq2HDhs4OA3A7LLbBTenChQs6deqUQkNDZbFYNH/+fMXGxuZLLI8fP64yZcqodOnSzgkUQLGzWCxasmSJevXqZWvLyMhQdna2goODnRcY4IY8nR0AYIa3t7fCwsKu269ChQo3IBoAzla2bFmVLVvW2WEAboehbThM69atNXLkSI0cOVLlypVTcHCwnn76aV0ugqelpenBBx9UYGCgSpcurS5dumjfvn226//88091795dgYGBKlOmjG699VatWLFCkv3Q9po1a/TQQw8pPT1dFotFFotFkydPlmQ/tN23b1/df//9djHm5OSofPnymjdvniTJMAxNmzZN1atXl5+fn2677TZ9+umnDv6mgJtD69atNXr0aE2YMEFBQUEKCwuz/V2TpPT0dA0dOlQhISEKCAhQ27Zt9dNPP9nd48UXX1RISIj8/f318MMP63/+53/shqS3bNmiDh06qHz58rJarWrVqpW2b99uO1+1alVJ0r///W9ZLBbb578PbX/zzTfy9fXNN0IxevRotWrVyvZ5w4YNuuuuu+Tn56eIiAiNHj1amZmZ//h7AtwJiSQcasGCBfL09NSmTZv0xhtvaPr06XrvvfckSQMHDtTWrVu1dOlSbdy4UYZhqGvXrsrJyZEkjRgxQtnZ2frhhx+0a9cuTZ06tcCKQ3R0tGbMmKGAgAClpKQoJSVF48aNy9evf//+Wrp0qTIyMmxt33zzjTIzM3XvvfdKkp5++mnNmzdPs2bN0p49e/T444/rgQce0Nq1ax3x9QA3nQULFqhMmTLatGmTpk2bpueff14rV66UYRi6++67lZqaqhUrVmjbtm26/fbb1a5dO506dUqSFB8fr5deeklTp07Vtm3bVLlyZc2aNcvu/mfPntWAAQO0bt06JSYmqlatWuratavOnj0r6VKiKUnz5s1TSkqK7fPftW/fXuXKldNnn31ma8vNzdUnn3yi/v37S5J27dqlTp066Z577tHOnTu1ePFirV+/XiNHjnTI9waUWAbgIK1atTLq1Klj5OXl2dqeeOIJo06dOsavv/5qSDJ+/PFH27kTJ04Yfn5+xieffGIYhmHUr1/fmDx5coH3Xr16tSHJSEtLMwzDMObNm2dYrdZ8/apUqWJMnz7dMAzDuHDhglG+fHnjgw8+sJ3v27evcd999xmGYRgZGRmGr6+vsWHDBrt7DB482Ojbt2+R3x8oaVq1amXccccddm1NmzY1nnjiCeP77783AgICjPPnz9udr1GjhjF79mzDMAyjefPmxogRI+zOt2zZ0rjtttuu+syLFy8a/v7+xrJly2xtkowlS5bY9Zs0aZLdfUaPHm20bdvW9vmbb74xvL29jVOnThmGYRgxMTHG0KFD7e6xbt06o1SpUkZWVtZV4wFgj4okHKpFixayWCy2z1FRUdq3b59+/vlneXp6qnnz5rZzwcHBioyMVHJysqRLw1AvvviiWrZsqUmTJmnnzp3/KBYvLy/dd999io+PlyRlZmbqyy+/tFUofv75Z50/f14dOnSwzbcqW7asPvjgA/3+++//6NlASdGgQQO7zxUrVtSxY8e0bds2ZWRkKDg42O7vz/79+21/f/bu3atmzZrZXX/l52PHjmnYsGGqXbu2rFarrFarMjIydPDgwSLF2b9/f61Zs0ZHjhyRdKka2rVrVwUGBkqStm3bpvnz59vF2qlTJ+Xl5Wn//v1FehbgzlhsA5diGIYt8Xz44YfVqVMnffXVV/r2228VFxenV199VaNGjTJ9//79+6tVq1Y6duyYVq5cKV9fX3Xp0kWSlJeXJ0n66quvVKlSJbvr+K1f4BIvLy+7zxaLRXl5ecrLy1PFihW1Zs2afNeUK1fOrv/fGVdsHDJw4EAdP35cM2bMUJUqVeTj46OoqChduHChSHE2a9ZMNWrU0KJFi/Too49qyZIltrnQ0qW/74888ohGjx6d79rKlSsX6VmAOyORhEMlJibm+1yrVi3VrVtXFy9e1KZNmxQdHS1JOnnypH799VfVqVPH1j8iIkLDhg3TsGHDNHHiRM2ZM6fARNLb21u5ubnXjSc6OloRERFavHixvv76a913333y9vaWJNWtW1c+Pj46ePCg3YR8ANd3++23KzU1VZ6enrYFMFeKjIzU5s2bFRMTY2vbunWrXZ9169bp7bffVteuXSVJhw4d0okTJ+z6eHl5Ferve79+/RQfH69bbrlFpUqV0t13320X7549e1SzZs3CviKAAjC0DYc6dOiQxowZo7179+rjjz/Wm2++qccee0y1atVSz549NWTIEK1fv14//fSTHnjgAVWqVEk9e/aUJMXGxuqbb77R/v37tX37dq1atcouyfy7qlWrKiMjQ99//71OnDihc+fOFdjPYrGoX79+euedd7Ry5Uo98MADtnP+/v4aN26cHn/8cS1YsEC///67duzYobfeeksLFiwo/i8HKEHat2+vqKgo9erVS998840OHDigDRs26Omnn7Yli6NGjdLcuXO1YMEC7du3Ty+++KJ27txpV6WsWbOmFi5cqOTkZG3atEn9+/eXn5+f3bOqVq2q77//XqmpqUpLS7tqTP3799f27dv10ksv6T//+Y98fX1t55544glt3LhRI0aMUFJSkvbt26elS5f+oxEPwB2RSMKhHnzwQWVlZalZs2YaMWKERo0apaFDh0q6tOqycePG6tatm6KiomQYhlasWGEbOsvNzdWIESNUp04dde7cWZGRkXr77bcLfE50dLSGDRumPn36qEKFCpo2bdpVY+rfv79+/vlnVapUSS1btrQ798ILL+jZZ59VXFyc6tSpo06dOmnZsmWqVq1aMX0jQMlksVi0YsUK3XXXXRo0aJBq166t+++/XwcOHFBoaKikS3/3Jk6cqHHjxun222/X/v37NXDgQLsE7/3331daWpoaNWqkmJgYjR49WiEhIXbPevXVV7Vy5UpFRESoUaNGV42pVq1aatq0qXbu3GmbC31ZgwYNtHbtWu3bt0933nmnGjVqpGeeeUYVK1Ysxm8FKPn4ZRs4TOvWrdWwYUN+ohDAVXXo0EFhYWFauHChs0MBYAJzJAEAN8S5c+f0zjvvqFOnTvLw8NDHH3+s7777TitXrnR2aABMIpEEANwQl4e/X3zxRWVnZysyMlKfffaZ2rdv7+zQAJjE0DYAAABMYbENAAAATCGRBAAAgCkkkgAAADCFRBIAAACmkEgCAADAFBJJAKZNnjxZDRs2tH0eOHCgevXqdcPjOHDggCwWi5KSkhz2jCvf1YwbEScA3EgkkkAJM3DgQFksFlksFnl5eal69eoaN26cMjMzHf7s119/XfPnzy9U3xudVLVu3VqxsbE35FkA4C7YkBwogTp37qx58+YpJydH69at08MPP6zMzEzNmjUrX9+cnBzb75v/U1artVjuAwC4OVCRBEogHx8fhYWFKSIiQv369VP//v31xRdfSPq/Idr3339f1atXl4+PjwzDUHp6uoYOHaqQkBAFBASobdu2+umnn+zu+/LLLys0NFT+/v4aPHiwzp8/b3f+yqHtvLw8TZ06VTVr1pSPj48qV66sl156SZJUrVo1SVKjRo1ksVjUunVr23Xz5s1TnTp15Ovrq3/96196++237Z6zefNmNWrUSL6+vmrSpIl27Njxj7+zJ554QrVr11bp0qVVvXp1PfPMM8rJycnXb/bs2YqIiFDp0qV133336fTp03bnrxf736Wlpal///6qUKGC/Pz8VKtWLc2bN+8fvwsA3ChUJAE34OfnZ5cU/fbbb/rkk0/02WefycPDQ5J09913KygoSCtWrJDVatXs2bPVrl07/frrrwoKCtInn3yiSZMm6a233tKdd96phQsX6o033lD16tWv+tyJEydqzpw5mj59uu644w6lpKTol19+kXQpGWzWrJm+++473XrrrfL29pYkzZkzR5MmTdLMmTPVqFEj7dixQ0OGDFGZMmU0YMAAZWZmqlu3bmrbtq0+/PBD7d+/X4899tg//o78/f01f/58hYeHa9euXRoyZIj8/f01YcKEfN/bsmXLdObMGQ0ePFgjRoxQfHx8oWK/0jPPPKOff/5ZX3/9tcqXL6/ffvtNWVlZ//hdAOCGMQCUKAMGDDB69uxp+7xp0yYjODjY6N27t2EYhjFp0iTDy8vLOHbsmK3P999/bwQEBBjnz5+3u1eNGjWM2bNnG4ZhGFFRUcawYcPszjdv3ty47bbbCnz2mTNnDB8fH2POnDkFxrl//35DkrFjxw679oiICOOjjz6ya3vhhReMqKgowzAMY/bs2UZQUJCRmZlpOz9r1qwC7/V3rVq1Mh577LGrnr/StGnTjMaNG9s+T5o0yfDw8DAOHTpka/v666+NUqVKGSkpKYWK/cp37t69u/HQQw8VOiYAcDVUJIESaPny5SpbtqwuXryonJwc9ezZU2+++abtfJUqVVShQgXb523btikjI0PBwcF298nKytLvv/8uSUpOTtawYcPszkdFRWn16tUFxpCcnKzs7Gy1a9eu0HEfP35chw4d0uDBgzVkyBBb+8WLF23zL5OTk3XbbbepdOnSdnH8U59++qlmzJih3377TRkZGbp48aICAgLs+lSuXFm33HKL3XPz8vK0d+9eeXh4XDf2Kz366KO69957tX37dnXs2FG9evVSdHT0P34XALhRSCSBEqhNmzaaNWuWvLy8FB4enm8xTZkyZew+5+XlqWLFilqzZk2+e5UrV85UDH5+fkW+Ji8vT9KlIeLmzZvbnbs8BG8Yhql4riUxMVH333+/nnvuOXXq1ElWq1WLFi3Sq6++es3rLBaL7f8WJvYrdenSRX/++ae++uorfffdd2rXrp1GjBihV155pRjeCgAcj0QSKIHKlCmjmjVrFrr/7bffrtTUVHl6eqpq1aoF9qlTp44SExP14IMP2toSExOves9atWrJz89P33//vR5++OF85y/PiczNzbW1hYaGqlKlSvrjjz/Uv3//Au9bt25dLVy4UFlZWbZk9VpxFMaPP/6oKlWq6KmnnrK1/fnnn/n6HTx4UEeOHFF4eLgkaePGjSpVqpRq165dqNgLUqFCBQ0cOFADBw7UnXfeqfHjx5NIArhpkEgCUPv27RUVFaVevXpp6tSpioyM1JEjR7RixQr16tVLTZo00WOPPaYBAwaoSZMmuuOOOxQfH689e/ZcdbGNr6+vnnjiCU2YMEHe3t5q2bKljh8/rj179mjw4MEKCQmRn5+fEhISdMstt8jX11dWq1WTJ0/W6NGjFRAQoC5duig7O1tbt25VWlqaxowZo379+umpp57S4MGD9fTTT+vAgQOFTryOHz+eb9/KsLAw1axZUwcPHtSiRYvUtGlTffXVV1qyZEmB7zRgwAC98sorOnPmjEaPHq3evXsrLCxMkq4b+5WeffZZNW7cWLfeequys7O1fPly1alTp1DvAgAuwdmTNAEUrysX21xp0qRJdgtkLjtz5owxatQoIzw83PDy8jIiIiKM/v37GwcPHrT1eemll4zy5csbZcuWNQYMGGBMmDDhqottDMMwcnNzjRdffNGoUqWK4eXlZVSuXNmYMmWK7fycOXOMiIgIo1SpUkarVq1s7fHx8UbDhg0Nb29vIzAw0LjrrruMzz//3HZ+48aNxm233WZ4e3sbDRs2ND777LNCLbaRlO+YNGmSYRiGMX78eCM4ONgoW7as0adPH2P69OmG1WrN9729/fbbRnh4uOHr62vcc889xqlTp+yec63Yr1xs88ILLxh16tQx/Pz8jKCgIKNnz57GH3/8cdV3AABXYzEMB0w4AgAAQInHhuQAAAAwhUQSAAAAppBIAgAAwBQSSQAAAJhCIgkAAABTSCQBAABgCokkAAAATCGRBAAAgCkkkgAAADCFRBIAAACmkEgCAADAlP8Hqf7JB2esBkAAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 800x600 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_confusion_matrix(y_test, y_pred, ['positive', 'negative'], 'NB')"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "2580FJCGs_oQ",
"outputId": "118f79e2-6b57-4cc0-a631-c2ef8a7e317e"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Classification Report NB:\n",
" precision recall f1-score support\n",
"\n",
" negative 0.86 0.87 0.86 5017\n",
" positive 0.87 0.86 0.86 4983\n",
"\n",
" accuracy 0.86 10000\n",
" macro avg 0.86 0.86 0.86 10000\n",
"weighted avg 0.86 0.86 0.86 10000\n",
"\n"
]
}
],
"source": [
"# Imprimir as métricas de avaliação\n",
"print_evaluation_metrics(y_test, y_pred, 'NB')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "x0JBy6nXvdjC"
},
"source": [
"# Conclusão\n",
"\n",
"É possível verificar no relatório de classificação que precisão e recall estão variando entre 86 a 87%. A métrica **F1-Score** combina precisão e recall, possui valor de aproximadamente 86%, o que indica um bom equilíbrio entre precisão e recall. A **Acurácia (accuracy)** geral do modelo é de 86%, o que significa que ele classificou corretamente aproximadamente 86% de todos os exemplos no conjunto de teste.\n",
"\n",
"O modelo Naive Bayes com vetorização TF-IDF conseguiu alcançar uma precisão, recall e F1-Score bastante equilibrados para ambas as classes, com uma acurácia geral de 86%. Podemos afirmar que o modelo é capaz de fazer previsões precisas em relação ao sentimento das revisões. Assim, podemos afirmar que o modelo estatístico possui um desempenho consideravelmente superior em relação à abordagem simbólica.\n"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"gpuType": "T4",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.7"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|