damnloveless
commited on
Commit
•
c984ada
1
Parent(s):
b4d9d76
Initial commit
Browse files- README.md +37 -0
- a2c-PandaPickAndPlace-v3.zip +3 -0
- a2c-PandaPickAndPlace-v3/_stable_baselines3_version +1 -0
- a2c-PandaPickAndPlace-v3/data +97 -0
- a2c-PandaPickAndPlace-v3/policy.optimizer.pth +3 -0
- a2c-PandaPickAndPlace-v3/policy.pth +3 -0
- a2c-PandaPickAndPlace-v3/pytorch_variables.pth +3 -0
- a2c-PandaPickAndPlace-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaPickAndPlace-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaPickAndPlace-v3
|
16 |
+
type: PandaPickAndPlace-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -50.00 +/- 0.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaPickAndPlace-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaPickAndPlace-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fbda74b62cf7c1b0a3698dbf957dbfd6ee32b29d3a34a4774e3e21281440db71
|
3 |
+
size 124467
|
a2c-PandaPickAndPlace-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaPickAndPlace-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7b627c1f0b80>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7b627c1de1c0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1699044379790575944,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAbbRBv7wowD6jVuE9C0MrvxUeqD6jVuE9gc6gvk1XJr+jVuE91bo8vzPitr5BUuE9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7k5Sv+jlSD5hCp0/2OKhv5W8+T7kxAY/R89pvSSG/z5Yq2m/yJAavvKrmL8NHIq/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAACHaWK8dUlZP4bxxD/YWni/7dGGvwUm9z9Mwmu/bbRBv7wowD6jVuE9JBVku4DdKL05UuC7QS8/vMkbO7wTKEY9mSV2ubaM57xKyyC8GRy+PoKElT8j7wo/X5MRvxyuEj/r7FM/1euYPwtDK78VHqg+o1bhPRoVZLuA3Si9qT7Lu+AvP7woHDu8EihGPde9dbkMjue8ccogvPe4QT+h+vo+vuiLvx2t/D6/0iu/nSNSvfHtmD+BzqC+TVcmv6NW4T0iFWS7gN0ovfpP3btYLz+81hs7vBMoRj3JFna554znvCvLILzmDFg/oWUwvjcfjL94Xo0+MX2Pvm3l77yC6pg/1bo8vzPitr5BUuE9fU1ru6PtJ724evq7JRk4vEybR7zTFUc9LUwrO7aa2bzwIiS8lGgOSwRLE4aUaBJ0lFKUdS4=",
|
33 |
+
"achieved_goal": "[[-0.7566593 0.37531078 0.11002853]\n [-0.66899174 0.3283545 0.11002853]\n [-0.3140755 -0.6497696 0.11002853]\n [-0.73722583 -0.3571945 0.11002017]]",
|
34 |
+
"desired_goal": "[[-0.8215169 0.19618952 1.2268792 ]\n [-1.2647352 0.4877669 0.5264418 ]\n [-0.05708244 0.4990703 -0.91277075]\n [-0.15094292 -1.1927474 -1.078981 ]]",
|
35 |
+
"observation": "[[-1.38191050e-02 8.48777115e-01 1.53862071e+00 -9.70136166e-01\n -1.05328143e+00 1.93084776e+00 -9.20933485e-01 -7.56659329e-01\n 3.75310779e-01 1.10028528e-01 -3.48026399e-03 -4.12268639e-02\n -6.84573920e-03 -1.16689811e-02 -1.14201987e-02 4.83780615e-02\n -2.34743944e-04 -2.82653384e-02 -9.81409289e-03]\n [ 3.71308118e-01 1.16810632e+00 5.42711437e-01 -5.68654954e-01\n 5.72969198e-01 8.27833831e-01 1.19469702e+00 -6.68991745e-01\n 3.28354508e-01 1.10028528e-01 -3.48026166e-03 -4.12268639e-02\n -6.20253803e-03 -1.16691291e-02 -1.14202872e-02 4.83780578e-02\n -2.34357416e-04 -2.82659754e-02 -9.81389079e-03]\n [ 7.56728590e-01 4.90193397e-01 -1.09304023e+00 4.93508250e-01\n -6.71184480e-01 -5.13034947e-02 1.19476140e+00 -3.14075500e-01\n -6.49769604e-01 1.10028528e-01 -3.48026352e-03 -4.12268639e-02\n -6.75391871e-03 -1.16690025e-02 -1.14202108e-02 4.83780615e-02\n -2.34688763e-04 -2.82654297e-02 -9.81406402e-03]\n [ 8.43946815e-01 -1.72262684e-01 -1.09470260e+00 2.76111364e-01\n -2.80252010e-01 -2.92842034e-02 1.19465661e+00 -7.37225831e-01\n -3.57194513e-01 1.10020168e-01 -3.59043409e-03 -4.09981124e-02\n -7.64402375e-03 -1.12364637e-02 -1.21830218e-02 4.86047976e-02\n 2.61379336e-03 -2.65630297e-02 -1.00180954e-02]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAANPjdPBqcmj0K16M8mVIfPXxH2z0K16M8BPdsPSM+n70K16M8C0bwvdWyET4K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaCIRvuB0izyjUgw+zO65PbdWiT0LDA4+aNCaPald5LxLQAg+2NPwvVX5872OoYY9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAANPjdPBqcmj0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAJlSHz18R9s9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAAE92w9Iz6fvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAC0bwvdWyET4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
|
44 |
+
"achieved_goal": "[[ 0.02709589 0.07549305 0.02 ]\n [ 0.03889713 0.10706994 0.02 ]\n [ 0.05785276 -0.07775524 0.02 ]\n [-0.1173211 0.14228375 0.02 ]]",
|
45 |
+
"desired_goal": "[[-0.14173281 0.0170235 0.13703398]\n [ 0.0907875 0.06705993 0.13871782]\n [ 0.07559282 -0.02787669 0.13305776]\n [-0.11759156 -0.11912791 0.06573783]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 2.7095892e-02\n 7.5493053e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 3.8897131e-02\n 1.0706994e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 5.7852760e-02\n -7.7755235e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.1732110e-01\n 1.4228375e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CmtwJOWSlndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmt4hhH9WIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmuA8580DVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmuK6Ln9vTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmuFK8cuJ2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmuNgh8pkPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmuWGig00ndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmugIdlum8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmua+vpyIYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmujViWmgrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmusskhRqHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmu2xx95QhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmuwx82JizdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmu5F2V3UydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmvAWGyon8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmvKSgXdj5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmvD5nDiwTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmvMNyHVPOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmvS4ODrZ8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmvcuSW7e3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmvXSbpeNUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmvfnRb8m8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmvoCoCMgmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmvx51FH8TdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmvsnBDXvqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmv09nK4hEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmv87hWHUMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmwG0P6KtQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmwAQ2VE/jdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmwInEuQIVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmwPxHww0wdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmwZu0svqUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmwUCpWFN+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmwcb4zrNXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmwlK5CngpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmwvYNI9TxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmwqN7SiM6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmwymWD6FedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmw52xptaZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmxDvaL4vfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmw9ZyEL6UdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmxFwPZqVRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmxOJ/G2kSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmxYcVgx8EdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmxSm3WnTBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmxa7KzRhMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmxh7ADaGpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmxr3R5TqCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmxk3mvGIbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmxtMA/9pAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmx0grH2h7dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cmx07noxHodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmx+ojGDL9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmx5dM9KVZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmyBzLOiWWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmyK4kVvdedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmyUpDeCTVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmyPxkNFz/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmyYHjp9qldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmyirpaA4GdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmysaYmb9ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmym7MottidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmyvTu4PPLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmy3caXKKYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmzBGlQ/HHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmy7NWluWKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmzDiSaEzwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmzNZcs189dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmzXRMewLWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmzS7Wd3B6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmzbUIcBEKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmzlkE1VHXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmzvYWcjJNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmzqPTw2ETdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmzyqNQ0oCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmz9smF8G+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm0HpCBwuNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm0CO14Pf9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm0Kj9OymidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm0SPa+N96dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm0buhTOxCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm0U9/rjYJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm0dSxA0KrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm0lmh24d7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm0vSPU8V6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm0pLO7g89dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm0xgIQe3hdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cm0phsQ/X5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm043HR1HOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm1CeT3Zf2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm1EooVmBfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm08uHWSU1dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cm09FIVdondX2UKGgGR8AUAAAAAAAAaAdLBmgIR0Cm1HB55Z8sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm1NMIeHSGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm1WuFQEZBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm1RawMYuTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm1bQI2OyWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm1hKcmShbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm1q2HtWuHdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True True]",
|
82 |
+
"bounded_above": "[ True True True True]",
|
83 |
+
"_shape": [
|
84 |
+
4
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaPickAndPlace-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf177d6a8cb926b80d2fbf1c5fd6d7ff5f07fde5bfc4f8dddb9f897b024567a2
|
3 |
+
size 52079
|
a2c-PandaPickAndPlace-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa393460a62ed726229ff9694f2349c022f7efd2a9ec91919a762d959fe94542
|
3 |
+
size 53359
|
a2c-PandaPickAndPlace-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
a2c-PandaPickAndPlace-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7b627c1f0b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b627c1de1c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699044379790575944, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAbbRBv7wowD6jVuE9C0MrvxUeqD6jVuE9gc6gvk1XJr+jVuE91bo8vzPitr5BUuE9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7k5Sv+jlSD5hCp0/2OKhv5W8+T7kxAY/R89pvSSG/z5Yq2m/yJAavvKrmL8NHIq/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAACHaWK8dUlZP4bxxD/YWni/7dGGvwUm9z9Mwmu/bbRBv7wowD6jVuE9JBVku4DdKL05UuC7QS8/vMkbO7wTKEY9mSV2ubaM57xKyyC8GRy+PoKElT8j7wo/X5MRvxyuEj/r7FM/1euYPwtDK78VHqg+o1bhPRoVZLuA3Si9qT7Lu+AvP7woHDu8EihGPde9dbkMjue8ccogvPe4QT+h+vo+vuiLvx2t/D6/0iu/nSNSvfHtmD+BzqC+TVcmv6NW4T0iFWS7gN0ovfpP3btYLz+81hs7vBMoRj3JFna554znvCvLILzmDFg/oWUwvjcfjL94Xo0+MX2Pvm3l77yC6pg/1bo8vzPitr5BUuE9fU1ru6PtJ724evq7JRk4vEybR7zTFUc9LUwrO7aa2bzwIiS8lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.7566593 0.37531078 0.11002853]\n [-0.66899174 0.3283545 0.11002853]\n [-0.3140755 -0.6497696 0.11002853]\n [-0.73722583 -0.3571945 0.11002017]]", "desired_goal": "[[-0.8215169 0.19618952 1.2268792 ]\n [-1.2647352 0.4877669 0.5264418 ]\n [-0.05708244 0.4990703 -0.91277075]\n [-0.15094292 -1.1927474 -1.078981 ]]", "observation": "[[-1.38191050e-02 8.48777115e-01 1.53862071e+00 -9.70136166e-01\n -1.05328143e+00 1.93084776e+00 -9.20933485e-01 -7.56659329e-01\n 3.75310779e-01 1.10028528e-01 -3.48026399e-03 -4.12268639e-02\n -6.84573920e-03 -1.16689811e-02 -1.14201987e-02 4.83780615e-02\n -2.34743944e-04 -2.82653384e-02 -9.81409289e-03]\n [ 3.71308118e-01 1.16810632e+00 5.42711437e-01 -5.68654954e-01\n 5.72969198e-01 8.27833831e-01 1.19469702e+00 -6.68991745e-01\n 3.28354508e-01 1.10028528e-01 -3.48026166e-03 -4.12268639e-02\n -6.20253803e-03 -1.16691291e-02 -1.14202872e-02 4.83780578e-02\n -2.34357416e-04 -2.82659754e-02 -9.81389079e-03]\n [ 7.56728590e-01 4.90193397e-01 -1.09304023e+00 4.93508250e-01\n -6.71184480e-01 -5.13034947e-02 1.19476140e+00 -3.14075500e-01\n -6.49769604e-01 1.10028528e-01 -3.48026352e-03 -4.12268639e-02\n -6.75391871e-03 -1.16690025e-02 -1.14202108e-02 4.83780615e-02\n -2.34688763e-04 -2.82654297e-02 -9.81406402e-03]\n [ 8.43946815e-01 -1.72262684e-01 -1.09470260e+00 2.76111364e-01\n -2.80252010e-01 -2.92842034e-02 1.19465661e+00 -7.37225831e-01\n -3.57194513e-01 1.10020168e-01 -3.59043409e-03 -4.09981124e-02\n -7.64402375e-03 -1.12364637e-02 -1.21830218e-02 4.86047976e-02\n 2.61379336e-03 -2.65630297e-02 -1.00180954e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAANPjdPBqcmj0K16M8mVIfPXxH2z0K16M8BPdsPSM+n70K16M8C0bwvdWyET4K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaCIRvuB0izyjUgw+zO65PbdWiT0LDA4+aNCaPald5LxLQAg+2NPwvVX5872OoYY9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAANPjdPBqcmj0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAJlSHz18R9s9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAAE92w9Iz6fvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAC0bwvdWyET4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.02709589 0.07549305 0.02 ]\n [ 0.03889713 0.10706994 0.02 ]\n [ 0.05785276 -0.07775524 0.02 ]\n [-0.1173211 0.14228375 0.02 ]]", "desired_goal": "[[-0.14173281 0.0170235 0.13703398]\n [ 0.0907875 0.06705993 0.13871782]\n [ 0.07559282 -0.02787669 0.13305776]\n [-0.11759156 -0.11912791 0.06573783]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 2.7095892e-02\n 7.5493053e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 3.8897131e-02\n 1.0706994e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 5.7852760e-02\n -7.7755235e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.1732110e-01\n 1.4228375e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CmtwJOWSlndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmt4hhH9WIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmuA8580DVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmuK6Ln9vTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmuFK8cuJ2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmuNgh8pkPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmuWGig00ndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmugIdlum8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmua+vpyIYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmujViWmgrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmusskhRqHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmu2xx95QhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmuwx82JizdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmu5F2V3UydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmvAWGyon8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmvKSgXdj5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmvD5nDiwTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmvMNyHVPOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmvS4ODrZ8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmvcuSW7e3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmvXSbpeNUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmvfnRb8m8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmvoCoCMgmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmvx51FH8TdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmvsnBDXvqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmv09nK4hEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmv87hWHUMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmwG0P6KtQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmwAQ2VE/jdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmwInEuQIVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmwPxHww0wdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmwZu0svqUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmwUCpWFN+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmwcb4zrNXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmwlK5CngpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmwvYNI9TxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmwqN7SiM6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmwymWD6FedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmw52xptaZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmxDvaL4vfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmw9ZyEL6UdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmxFwPZqVRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmxOJ/G2kSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmxYcVgx8EdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmxSm3WnTBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmxa7KzRhMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmxh7ADaGpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmxr3R5TqCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmxk3mvGIbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmxtMA/9pAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmx0grH2h7dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cmx07noxHodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmx+ojGDL9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmx5dM9KVZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmyBzLOiWWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmyK4kVvdedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmyUpDeCTVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmyPxkNFz/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmyYHjp9qldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmyirpaA4GdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmysaYmb9ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmym7MottidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmyvTu4PPLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmy3caXKKYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmzBGlQ/HHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmy7NWluWKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmzDiSaEzwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmzNZcs189dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmzXRMewLWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmzS7Wd3B6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmzbUIcBEKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmzlkE1VHXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmzvYWcjJNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmzqPTw2ETdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmzyqNQ0oCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmz9smF8G+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm0HpCBwuNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm0CO14Pf9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm0Kj9OymidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm0SPa+N96dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm0buhTOxCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm0U9/rjYJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm0dSxA0KrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm0lmh24d7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm0vSPU8V6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm0pLO7g89dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm0xgIQe3hdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cm0phsQ/X5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm043HR1HOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm1CeT3Zf2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm1EooVmBfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm08uHWSU1dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cm09FIVdondX2UKGgGR8AUAAAAAAAAaAdLBmgIR0Cm1HB55Z8sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm1NMIeHSGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm1WuFQEZBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm1RawMYuTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm1bQI2OyWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm1hKcmShbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cm1q2HtWuHdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (725 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-03T21:34:58.029846"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:418735a7749e929ebac068c071b184127b5f7195df048e0b713ae935f54479a5
|
3 |
+
size 3013
|