dada22231 commited on
Commit
1776025
·
verified ·
1 Parent(s): 758acfe

End of training

Browse files
Files changed (2) hide show
  1. README.md +167 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: HuggingFaceM4/tiny-random-LlamaForCausalLM
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: 68489401-df73-486e-9324-a79fc96a759d
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.1`
19
+ ```yaml
20
+ adapter: lora
21
+ base_model: HuggingFaceM4/tiny-random-LlamaForCausalLM
22
+ bf16: auto
23
+ chat_template: llama3
24
+ cosine_min_lr_ratio: 0.1
25
+ data_processes: 16
26
+ dataset_prepared_path: null
27
+ datasets:
28
+ - data_files:
29
+ - 546a169b99066ad1_train_data.json
30
+ ds_type: json
31
+ format: custom
32
+ path: /workspace/input_data/546a169b99066ad1_train_data.json
33
+ type:
34
+ field_input: poem
35
+ field_instruction: poet
36
+ field_output: title
37
+ format: '{instruction} {input}'
38
+ no_input_format: '{instruction}'
39
+ system_format: '{system}'
40
+ system_prompt: ''
41
+ debug: null
42
+ deepspeed: null
43
+ device_map: '{'''':torch.cuda.current_device()}'
44
+ do_eval: true
45
+ early_stopping_patience: 1
46
+ eval_batch_size: 1
47
+ eval_sample_packing: false
48
+ eval_steps: 25
49
+ evaluation_strategy: steps
50
+ flash_attention: true
51
+ fp16: null
52
+ fsdp: null
53
+ fsdp_config: null
54
+ gradient_accumulation_steps: 32
55
+ gradient_checkpointing: true
56
+ group_by_length: true
57
+ hub_model_id: dada22231/68489401-df73-486e-9324-a79fc96a759d
58
+ hub_strategy: checkpoint
59
+ hub_token: null
60
+ learning_rate: 0.0001
61
+ load_in_4bit: false
62
+ load_in_8bit: false
63
+ local_rank: null
64
+ logging_steps: 1
65
+ lora_alpha: 64
66
+ lora_dropout: 0.05
67
+ lora_fan_in_fan_out: null
68
+ lora_model_dir: null
69
+ lora_r: 32
70
+ lora_target_linear: true
71
+ lora_target_modules:
72
+ - q_proj
73
+ - v_proj
74
+ lr_scheduler: cosine
75
+ max_grad_norm: 1.0
76
+ max_memory:
77
+ 0: 70GiB
78
+ 1: 70GiB
79
+ 2: 70GiB
80
+ 3: 70GiB
81
+ max_steps: 25
82
+ micro_batch_size: 1
83
+ mlflow_experiment_name: /tmp/546a169b99066ad1_train_data.json
84
+ model_type: AutoModelForCausalLM
85
+ num_epochs: 3
86
+ optim_args:
87
+ adam_beta1: 0.9
88
+ adam_beta2: 0.95
89
+ adam_epsilon: 1e-5
90
+ optimizer: adamw_torch
91
+ output_dir: miner_id_24
92
+ pad_to_sequence_len: true
93
+ resume_from_checkpoint: null
94
+ s2_attention: null
95
+ sample_packing: false
96
+ save_steps: 25
97
+ save_strategy: steps
98
+ sequence_len: 2048
99
+ strict: false
100
+ tf32: false
101
+ tokenizer_type: AutoTokenizer
102
+ torch_compile: false
103
+ train_on_inputs: false
104
+ trust_remote_code: true
105
+ val_set_size: 50
106
+ wandb_entity: null
107
+ wandb_mode: online
108
+ wandb_name: 68489401-df73-486e-9324-a79fc96a759d
109
+ wandb_project: Public_TuningSN
110
+ wandb_runid: 68489401-df73-486e-9324-a79fc96a759d
111
+ warmup_ratio: 0.04
112
+ weight_decay: 0.01
113
+ xformers_attention: null
114
+
115
+ ```
116
+
117
+ </details><br>
118
+
119
+ # 68489401-df73-486e-9324-a79fc96a759d
120
+
121
+ This model is a fine-tuned version of [HuggingFaceM4/tiny-random-LlamaForCausalLM](https://huggingface.co/HuggingFaceM4/tiny-random-LlamaForCausalLM) on the None dataset.
122
+ It achieves the following results on the evaluation set:
123
+ - Loss: 10.3616
124
+
125
+ ## Model description
126
+
127
+ More information needed
128
+
129
+ ## Intended uses & limitations
130
+
131
+ More information needed
132
+
133
+ ## Training and evaluation data
134
+
135
+ More information needed
136
+
137
+ ## Training procedure
138
+
139
+ ### Training hyperparameters
140
+
141
+ The following hyperparameters were used during training:
142
+ - learning_rate: 0.0001
143
+ - train_batch_size: 1
144
+ - eval_batch_size: 1
145
+ - seed: 42
146
+ - gradient_accumulation_steps: 32
147
+ - total_train_batch_size: 32
148
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
149
+ - lr_scheduler_type: cosine
150
+ - lr_scheduler_warmup_steps: 2
151
+ - training_steps: 25
152
+
153
+ ### Training results
154
+
155
+ | Training Loss | Epoch | Step | Validation Loss |
156
+ |:-------------:|:------:|:----:|:---------------:|
157
+ | 10.3784 | 0.0003 | 1 | 10.3674 |
158
+ | 10.3726 | 0.0067 | 25 | 10.3616 |
159
+
160
+
161
+ ### Framework versions
162
+
163
+ - PEFT 0.13.2
164
+ - Transformers 4.46.0
165
+ - Pytorch 2.5.0+cu124
166
+ - Datasets 3.0.1
167
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f2a7fd27c96bdecac345a50674a3256d76c01bfe89668ab9ecc7410784509d8
3
+ size 104322