File size: 6,442 Bytes
3ec7e8a 71db07e 3ec7e8a fe3a96a 5a11060 fe3a96a 3ec7e8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
---
tags:
- merge
- mergekit
- lazymergekit
- IlyaGusev/saiga_llama3_8b
- lightblue/suzume-llama-3-8B-multilingual
base_model:
- IlyaGusev/saiga_llama3_8b
- lightblue/suzume-llama-3-8B-multilingual
license: llama3
language:
- ru
- en
pipeline_tag: text-generation
---
# Llama-3-8B-saiga-suzume-ties
Llama-3-8B-saiga-suzume-ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [IlyaGusev/saiga_llama3_8b](https://huggingface.co/IlyaGusev/saiga_llama3_8b)
* [lightblue/suzume-llama-3-8B-multilingual](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual)
## 🧩 Configuration
```yaml
models:
- model: NousResearch/Meta-Llama-3-8B-Instruct
- model: IlyaGusev/saiga_llama3_8b
parameters:
density: 0.5
weight: 0.3
- model: lightblue/suzume-llama-3-8B-multilingual
parameters:
density: 0.5
weight: 0.5
merge_method: ties
base_model: NousResearch/Meta-Llama-3-8B-Instruct
parameters:
normalize: true
dtype: float16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "d0rj/Llama-3-8B-saiga-suzume-ties"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
or
```python
import torch
from transformers import AutoTokenizer, GenerationConfig, AutoModelForCausalLM
model_id = "d0rj/Llama-3-8B-saiga-suzume-ties"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2", # if you can
).to("cuda").eval()
generation_config = GenerationConfig(
do_sample=True,
top_k=30,
top_p=0.9,
temperature=1.04,
repeatition_penalty=1.2,
max_length=8192,
max_new_tokens=512,
min_new_tokens=2,
pad_token_id=tokenizer.eos_token_id,
)
data = tokenizer.apply_chat_template(
[
{"role": "system", "content": "Ты — Сайга, русскоязычный автоматический ассистент. Ты разговариваешь с людьми и помогаешь им."},
{"role": "user", "content": "Привет! Как дела?"},
{"role": "assistant", "content": "Привет! Спасибо, дела неплохо. Как у тебя? Чем могу помочь?"},
{"role": "user", "content": "Расскажи, как сдать сессию, если лень даже думать о ней?"},
],
return_tensors="pt",
return_dict=True,
add_generation_prompt=True,
).to(model.device)
with torch.inference_mode():
output_ids = model.generate(
**data,
generation_config=generation_config
)[0]
output_ids = output_ids[len(data["input_ids"][0]):]
output = tokenizer.decode(output_ids, skip_special_tokens=True)
print(output.strip())
```
```
Сдача сессии — это важный момент в жизни каждого студента. Если вы чувствуете лень думать о ней, возможно, стоит попытаться найти мотивацию. Вот несколько советов, которые могут помочь:
1. **Определите причины своей лени.** Если лень связана с чем-то конкретным, попробуйте определить и устранить эту проблему. Например, может быть, вы недосыпаете, вечно устаете или что-то еще.
2. **Рассмотрите сессию как часть вашей жизни.** Понимание того, что сессия — это не просто обязанность, а также возможность учиться и развиваться, может изменить ваше отношение к этому процессу.
3. **Разбейте задачи на маленькие части.** Часто кажется, что большая задача непреодолима, но если разделить ее на меньшие, они станут более доступными.
4. **Планируйте и организуйте свое время.** Разработайте план изучения и следуйте ему. Это поможет вам лучше управлять своим временем и мотивацией.
5. **Получите поддержку.** Поделитесь своими трудностями с друзьями или семьей. Они могут предложить советы или поддержку.
6. **Найдите способы сделать изучение интересным.** Может быть, найдите что-то, что вам нравится, и начните изучать вместе с этим. Это поможет сделать процесс более приятным и стимулирует вас к обучению.
7. **Создайте для себя награды за выполнение задач.** Это может быть что-то простое, например, посмотреть свою любимую серию или сходить на прогулку. Таким образом, вы будете мотивированы продолжать изучение.
8. **Помните о своих целях.** Долгосрочные цели могут служить хорошим мотивационным фактором. Помните, что каждая сессия — это шаг к достижению ваших мечт.
Помните, что самое главное — это не сдача сессии, а процесс обучения и развития. Будьте добры к себе и не забывайте о своих успехах
``` |