File size: 1,374 Bytes
66768f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
model-index:
- name: opt-125m
results:
- task:
type: text-generation
dataset:
name: Wikitext
type: wikitext
metrics:
- type: perplexity (BASELINE)
value: 31.94644314710864
- type: perplexity (BASIC)
value: 32.05778110592746
---
This is a d-Matrix functional reference of the OPT-125M model.
The reference provides the following functional *configurations*:
Configuration | Explanation
:-- | :--
**`BASELINE`** | a reference functionally equivalent to the original model
**`BASIC`** | all linear algebraic operands quantized to `BFP16-64`, and all other operations transformed to approximated kernel simulations
### Usage
Install d-Matrix [Dmx_Compressor](https://github.com/d-matrix-ai/dmx-compressor) first.
```sh
pip install dmx_compressor
```
The following is an example model and its evaluation.
```sh
pip install lm-eval
```
```python
from dmx.compressor.modeling import DmxModel
import lm_eval
model_args = f"pretrained="d-matrix/opt-125m",trust_remote_code=True"
lm = lm_eval.api.registry.get_model("hf").create_from_arg_string(model_args, {"batch_size": 1})
# Transform the model with DMX
lm._model = DmxModel.from_torch(lm._model).to_basic_model() # Using BASIC configuration
eval_results = lm_eval.evaluate(lm, lm_eval.tasks.get_task_dict([task]) # Assign desired task, i.e. "wikitext"
``` |