Text Generation
English
Eval Results
d-matrix commited on
Commit
ec3a086
1 Parent(s): 93cadd1

Upload modeling_gpt2.py

Browse files
Files changed (1) hide show
  1. modeling_gpt2.py +1713 -0
modeling_gpt2.py ADDED
@@ -0,0 +1,1713 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """PyTorch OpenAI GPT-2 model."""
17
+
18
+ import math
19
+ import os
20
+ import warnings
21
+ from dataclasses import dataclass
22
+ from typing import Optional, Tuple, Union
23
+
24
+ import torch
25
+ import torch.utils.checkpoint
26
+ from torch import nn
27
+ from torch.cuda.amp import autocast
28
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
29
+
30
+ from ...activations import ACT2FN
31
+ from ...modeling_outputs import (
32
+ BaseModelOutputWithPastAndCrossAttentions,
33
+ CausalLMOutputWithCrossAttentions,
34
+ QuestionAnsweringModelOutput,
35
+ SequenceClassifierOutputWithPast,
36
+ TokenClassifierOutput,
37
+ )
38
+ from ...modeling_utils import PreTrainedModel, SequenceSummary
39
+ from ...pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer
40
+ from ...utils import (
41
+ ModelOutput,
42
+ add_code_sample_docstrings,
43
+ add_start_docstrings,
44
+ add_start_docstrings_to_model_forward,
45
+ logging,
46
+ replace_return_docstrings,
47
+ )
48
+ from ...utils.model_parallel_utils import assert_device_map, get_device_map
49
+ from .configuration_gpt2 import GPT2Config
50
+
51
+
52
+ logger = logging.get_logger(__name__)
53
+
54
+ _CHECKPOINT_FOR_DOC = "gpt2"
55
+ _CONFIG_FOR_DOC = "GPT2Config"
56
+
57
+ GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = [
58
+ "gpt2",
59
+ "gpt2-medium",
60
+ "gpt2-large",
61
+ "gpt2-xl",
62
+ "distilgpt2",
63
+ # See all GPT-2 models at https://huggingface.co/models?filter=gpt2
64
+ ]
65
+
66
+
67
+ def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
68
+ """Load tf checkpoints in a pytorch model"""
69
+ try:
70
+ import re
71
+
72
+ import tensorflow as tf
73
+ except ImportError:
74
+ logger.error(
75
+ "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
76
+ "https://www.tensorflow.org/install/ for installation instructions."
77
+ )
78
+ raise
79
+ tf_path = os.path.abspath(gpt2_checkpoint_path)
80
+ logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
81
+ # Load weights from TF model
82
+ init_vars = tf.train.list_variables(tf_path)
83
+ names = []
84
+ arrays = []
85
+ for name, shape in init_vars:
86
+ logger.info(f"Loading TF weight {name} with shape {shape}")
87
+ array = tf.train.load_variable(tf_path, name)
88
+ names.append(name)
89
+ arrays.append(array.squeeze())
90
+
91
+ for name, array in zip(names, arrays):
92
+ name = name[6:] # skip "model/"
93
+ name = name.split("/")
94
+ pointer = model
95
+ for m_name in name:
96
+ if re.fullmatch(r"[A-Za-z]+\d+", m_name):
97
+ scope_names = re.split(r"(\d+)", m_name)
98
+ else:
99
+ scope_names = [m_name]
100
+ if scope_names[0] == "w" or scope_names[0] == "g":
101
+ pointer = getattr(pointer, "weight")
102
+ elif scope_names[0] == "b":
103
+ pointer = getattr(pointer, "bias")
104
+ elif scope_names[0] == "wpe" or scope_names[0] == "wte":
105
+ pointer = getattr(pointer, scope_names[0])
106
+ pointer = getattr(pointer, "weight")
107
+ else:
108
+ pointer = getattr(pointer, scope_names[0])
109
+ if len(scope_names) >= 2:
110
+ num = int(scope_names[1])
111
+ pointer = pointer[num]
112
+ try:
113
+ if pointer.shape != array.shape:
114
+ raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
115
+ except ValueError as e:
116
+ e.args += (pointer.shape, array.shape)
117
+ raise
118
+ logger.info(f"Initialize PyTorch weight {name}")
119
+ pointer.data = torch.from_numpy(array)
120
+ return model
121
+
122
+
123
+ class GPT2Attention(nn.Module):
124
+ def __init__(self, config, is_cross_attention=False, layer_idx=None):
125
+ super().__init__()
126
+
127
+ max_positions = config.max_position_embeddings
128
+ self.register_buffer(
129
+ "bias",
130
+ torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
131
+ 1, 1, max_positions, max_positions
132
+ ),
133
+ persistent=False,
134
+ )
135
+ self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
136
+
137
+ self.embed_dim = config.hidden_size
138
+ self.num_heads = config.num_attention_heads
139
+ self.head_dim = self.embed_dim // self.num_heads
140
+ self.split_size = self.embed_dim
141
+ if self.head_dim * self.num_heads != self.embed_dim:
142
+ raise ValueError(
143
+ f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
144
+ f" {self.num_heads})."
145
+ )
146
+
147
+ self.scale_attn_weights = config.scale_attn_weights
148
+ self.is_cross_attention = is_cross_attention
149
+
150
+ # Layer-wise attention scaling, reordering, and upcasting
151
+ self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx
152
+ self.layer_idx = layer_idx
153
+ self.reorder_and_upcast_attn = config.reorder_and_upcast_attn
154
+
155
+ if self.is_cross_attention:
156
+ self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim)
157
+ self.q_attn = Conv1D(self.embed_dim, self.embed_dim)
158
+ else:
159
+ self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim)
160
+ self.c_proj = Conv1D(self.embed_dim, self.embed_dim)
161
+
162
+ self.attn_dropout = nn.Dropout(config.attn_pdrop)
163
+ self.resid_dropout = nn.Dropout(config.resid_pdrop)
164
+
165
+ self.pruned_heads = set()
166
+
167
+ def prune_heads(self, heads):
168
+ if len(heads) == 0:
169
+ return
170
+ heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads)
171
+ index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])
172
+
173
+ # Prune conv1d layers
174
+ self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
175
+ self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
176
+
177
+ # Update hyper params
178
+ self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads))
179
+ self.num_heads = self.num_heads - len(heads)
180
+ self.pruned_heads = self.pruned_heads.union(heads)
181
+
182
+ def _attn(self, query, key, value, attention_mask=None, head_mask=None):
183
+ attn_weights = torch.matmul(query, key.transpose(-1, -2))
184
+
185
+ if self.scale_attn_weights:
186
+ attn_weights = attn_weights / torch.full(
187
+ [], value.size(-1) ** 0.5, dtype=attn_weights.dtype, device=attn_weights.device
188
+ )
189
+
190
+ # Layer-wise attention scaling
191
+ if self.scale_attn_by_inverse_layer_idx:
192
+ attn_weights = attn_weights / float(self.layer_idx + 1)
193
+
194
+ if not self.is_cross_attention:
195
+ # if only "normal" attention layer implements causal mask
196
+ query_length, key_length = query.size(-2), key.size(-2)
197
+ causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
198
+ mask_value = torch.finfo(attn_weights.dtype).min
199
+ # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
200
+ # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
201
+ mask_value = torch.full([], mask_value, dtype=attn_weights.dtype, device=attn_weights.device)
202
+ attn_weights = torch.where(causal_mask, attn_weights.to(attn_weights.dtype), mask_value)
203
+
204
+ if attention_mask is not None:
205
+ # Apply the attention mask
206
+ attn_weights = attn_weights + attention_mask
207
+
208
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
209
+
210
+ # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise
211
+ attn_weights = attn_weights.type(value.dtype)
212
+ attn_weights = self.attn_dropout(attn_weights)
213
+
214
+ # Mask heads if we want to
215
+ if head_mask is not None:
216
+ attn_weights = attn_weights * head_mask
217
+
218
+ attn_output = torch.matmul(attn_weights, value)
219
+
220
+ return attn_output, attn_weights
221
+
222
+ def _upcast_and_reordered_attn(self, query, key, value, attention_mask=None, head_mask=None):
223
+ # Use `torch.baddbmm` (a bit more efficient w/ alpha param for scaling -- from Megatron-LM)
224
+ bsz, num_heads, q_seq_len, dk = query.size()
225
+ _, _, k_seq_len, _ = key.size()
226
+
227
+ # Preallocate attn_weights for `baddbmm`
228
+ attn_weights = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=torch.float32, device=query.device)
229
+
230
+ # Compute Scale Factor
231
+ scale_factor = 1.0
232
+ if self.scale_attn_weights:
233
+ scale_factor /= float(value.size(-1)) ** 0.5
234
+
235
+ if self.scale_attn_by_inverse_layer_idx:
236
+ scale_factor /= float(self.layer_idx + 1)
237
+
238
+ # Upcast (turn off autocast) and reorder (Scale K by 1 / root(dk))
239
+ with autocast(enabled=False):
240
+ q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(-1, dk, k_seq_len)
241
+ attn_weights = torch.baddbmm(attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor)
242
+ attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
243
+
244
+ if not self.is_cross_attention:
245
+ # if only "normal" attention layer implements causal mask
246
+ query_length, key_length = query.size(-2), key.size(-2)
247
+ causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
248
+ mask_value = torch.finfo(attn_weights.dtype).min
249
+ # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
250
+ # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
251
+ mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
252
+ attn_weights = torch.where(causal_mask, attn_weights, mask_value)
253
+
254
+ if attention_mask is not None:
255
+ # Apply the attention mask
256
+ attn_weights = attn_weights + attention_mask
257
+
258
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
259
+
260
+ # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op if otherwise
261
+ if attn_weights.dtype != torch.float32:
262
+ raise RuntimeError("Error with upcasting, attn_weights does not have dtype torch.float32")
263
+ attn_weights = attn_weights.type(value.dtype)
264
+ attn_weights = self.attn_dropout(attn_weights)
265
+
266
+ # Mask heads if we want to
267
+ if head_mask is not None:
268
+ attn_weights = attn_weights * head_mask
269
+
270
+ attn_output = torch.matmul(attn_weights, value)
271
+
272
+ return attn_output, attn_weights
273
+
274
+ def _split_heads(self, tensor, num_heads, attn_head_size):
275
+ """
276
+ Splits hidden_size dim into attn_head_size and num_heads
277
+ """
278
+ new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
279
+ tensor = tensor.view(new_shape)
280
+ return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
281
+
282
+ def _merge_heads(self, tensor, num_heads, attn_head_size):
283
+ """
284
+ Merges attn_head_size dim and num_attn_heads dim into hidden_size
285
+ """
286
+ tensor = tensor.permute(0, 2, 1, 3).contiguous()
287
+ new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
288
+ return tensor.view(new_shape)
289
+
290
+ def forward(
291
+ self,
292
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
293
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
294
+ attention_mask: Optional[torch.FloatTensor] = None,
295
+ head_mask: Optional[torch.FloatTensor] = None,
296
+ encoder_hidden_states: Optional[torch.Tensor] = None,
297
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
298
+ use_cache: Optional[bool] = False,
299
+ output_attentions: Optional[bool] = False,
300
+ ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
301
+ if encoder_hidden_states is not None:
302
+ if not hasattr(self, "q_attn"):
303
+ raise ValueError(
304
+ "If class is used as cross attention, the weights `q_attn` have to be defined. "
305
+ "Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`."
306
+ )
307
+
308
+ query = self.q_attn(hidden_states)
309
+ key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
310
+ attention_mask = encoder_attention_mask
311
+ else:
312
+ query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
313
+
314
+ query = self._split_heads(query, self.num_heads, self.head_dim)
315
+ key = self._split_heads(key, self.num_heads, self.head_dim)
316
+ value = self._split_heads(value, self.num_heads, self.head_dim)
317
+
318
+ if layer_past is not None:
319
+ past_key, past_value = layer_past
320
+ key = torch.cat((past_key, key), dim=-2)
321
+ value = torch.cat((past_value, value), dim=-2)
322
+
323
+ if use_cache is True:
324
+ present = (key, value)
325
+ else:
326
+ present = None
327
+
328
+ if self.reorder_and_upcast_attn:
329
+ attn_output, attn_weights = self._upcast_and_reordered_attn(query, key, value, attention_mask, head_mask)
330
+ else:
331
+ attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
332
+
333
+ attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
334
+ attn_output = self.c_proj(attn_output)
335
+ attn_output = self.resid_dropout(attn_output)
336
+
337
+ outputs = (attn_output, present)
338
+ if output_attentions:
339
+ outputs += (attn_weights,)
340
+
341
+ return outputs # a, present, (attentions)
342
+
343
+
344
+ class GPT2MLP(nn.Module):
345
+ def __init__(self, intermediate_size, config):
346
+ super().__init__()
347
+ embed_dim = config.hidden_size
348
+ self.c_fc = Conv1D(intermediate_size, embed_dim)
349
+ self.c_proj = Conv1D(embed_dim, intermediate_size)
350
+ self.act = ACT2FN[config.activation_function]
351
+ self.dropout = nn.Dropout(config.resid_pdrop)
352
+
353
+ def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
354
+ hidden_states = self.c_fc(hidden_states)
355
+ hidden_states = self.act(hidden_states)
356
+ hidden_states = self.c_proj(hidden_states)
357
+ hidden_states = self.dropout(hidden_states)
358
+ return hidden_states
359
+
360
+
361
+ class GPT2Block(nn.Module):
362
+ def __init__(self, config, layer_idx=None):
363
+ super().__init__()
364
+ hidden_size = config.hidden_size
365
+ inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
366
+
367
+ self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
368
+ self.attn = GPT2Attention(config, layer_idx=layer_idx)
369
+ self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
370
+
371
+ if config.add_cross_attention:
372
+ self.crossattention = GPT2Attention(config, is_cross_attention=True, layer_idx=layer_idx)
373
+ self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
374
+
375
+ self.mlp = GPT2MLP(inner_dim, config)
376
+
377
+ def forward(
378
+ self,
379
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
380
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
381
+ attention_mask: Optional[torch.FloatTensor] = None,
382
+ head_mask: Optional[torch.FloatTensor] = None,
383
+ encoder_hidden_states: Optional[torch.Tensor] = None,
384
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
385
+ use_cache: Optional[bool] = False,
386
+ output_attentions: Optional[bool] = False,
387
+ ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
388
+ residual = hidden_states
389
+ hidden_states = self.ln_1(hidden_states)
390
+ attn_outputs = self.attn(
391
+ hidden_states,
392
+ layer_past=layer_past,
393
+ attention_mask=attention_mask,
394
+ head_mask=head_mask,
395
+ use_cache=use_cache,
396
+ output_attentions=output_attentions,
397
+ )
398
+ attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
399
+ outputs = attn_outputs[1:]
400
+ # residual connection
401
+ hidden_states = attn_output + residual
402
+
403
+ if encoder_hidden_states is not None:
404
+ # add one self-attention block for cross-attention
405
+ if not hasattr(self, "crossattention"):
406
+ raise ValueError(
407
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
408
+ "cross-attention layers by setting `config.add_cross_attention=True`"
409
+ )
410
+ residual = hidden_states
411
+ hidden_states = self.ln_cross_attn(hidden_states)
412
+ cross_attn_outputs = self.crossattention(
413
+ hidden_states,
414
+ attention_mask=attention_mask,
415
+ head_mask=head_mask,
416
+ encoder_hidden_states=encoder_hidden_states,
417
+ encoder_attention_mask=encoder_attention_mask,
418
+ output_attentions=output_attentions,
419
+ )
420
+ attn_output = cross_attn_outputs[0]
421
+ # residual connection
422
+ hidden_states = residual + attn_output
423
+ outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights
424
+
425
+ residual = hidden_states
426
+ hidden_states = self.ln_2(hidden_states)
427
+ feed_forward_hidden_states = self.mlp(hidden_states)
428
+ # residual connection
429
+ hidden_states = residual + feed_forward_hidden_states
430
+
431
+ if use_cache:
432
+ outputs = (hidden_states,) + outputs
433
+ else:
434
+ outputs = (hidden_states,) + outputs[1:]
435
+
436
+ return outputs # hidden_states, present, (attentions, cross_attentions)
437
+
438
+
439
+ class GPT2PreTrainedModel(PreTrainedModel):
440
+ """
441
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
442
+ models.
443
+ """
444
+
445
+ config_class = GPT2Config
446
+ load_tf_weights = load_tf_weights_in_gpt2
447
+ base_model_prefix = "transformer"
448
+ is_parallelizable = True
449
+ supports_gradient_checkpointing = True
450
+ _no_split_modules = ["GPT2Block"]
451
+ _skip_keys_device_placement = "past_key_values"
452
+
453
+ def __init__(self, *inputs, **kwargs):
454
+ super().__init__(*inputs, **kwargs)
455
+
456
+ def _init_weights(self, module):
457
+ """Initialize the weights."""
458
+ if isinstance(module, (nn.Linear, Conv1D)):
459
+ # Slightly different from the TF version which uses truncated_normal for initialization
460
+ # cf https://github.com/pytorch/pytorch/pull/5617
461
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
462
+ if module.bias is not None:
463
+ module.bias.data.zero_()
464
+ elif isinstance(module, nn.Embedding):
465
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
466
+ if module.padding_idx is not None:
467
+ module.weight.data[module.padding_idx].zero_()
468
+ elif isinstance(module, nn.LayerNorm):
469
+ module.bias.data.zero_()
470
+ module.weight.data.fill_(1.0)
471
+
472
+ # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
473
+ # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
474
+ # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
475
+ # > -- GPT-2 :: https://openai.com/blog/better-language-models/
476
+ #
477
+ # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
478
+ for name, p in module.named_parameters():
479
+ if name == "c_proj.weight":
480
+ # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
481
+ p.data.normal_(mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer)))
482
+
483
+
484
+ @dataclass
485
+ class GPT2DoubleHeadsModelOutput(ModelOutput):
486
+ """
487
+ Base class for outputs of models predicting if two sentences are consecutive or not.
488
+
489
+ Args:
490
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
491
+ Language modeling loss.
492
+ mc_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mc_labels` is provided):
493
+ Multiple choice classification loss.
494
+ logits (`torch.FloatTensor` of shape `(batch_size, num_choices, sequence_length, config.vocab_size)`):
495
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
496
+ mc_logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`):
497
+ Prediction scores of the multiple choice classification head (scores for each choice before SoftMax).
498
+ past_key_values (`Tuple[Tuple[torch.Tensor]]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
499
+ Tuple of length `config.n_layers`, containing tuples of tensors of shape `(batch_size, num_heads,
500
+ sequence_length, embed_size_per_head)`).
501
+
502
+ Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
503
+ `past_key_values` input) to speed up sequential decoding.
504
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
505
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
506
+ shape `(batch_size, sequence_length, hidden_size)`.
507
+
508
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
509
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
510
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
511
+ sequence_length)`.
512
+
513
+ GPT2Attentions weights after the attention softmax, used to compute the weighted average in the
514
+ self-attention heads.
515
+ """
516
+
517
+ loss: Optional[torch.FloatTensor] = None
518
+ mc_loss: Optional[torch.FloatTensor] = None
519
+ logits: torch.FloatTensor = None
520
+ mc_logits: torch.FloatTensor = None
521
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
522
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
523
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
524
+
525
+
526
+ GPT2_START_DOCSTRING = r"""
527
+
528
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
529
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
530
+ etc.)
531
+
532
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
533
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
534
+ and behavior.
535
+
536
+ Parameters:
537
+ config ([`GPT2Config`]): Model configuration class with all the parameters of the model.
538
+ Initializing with a config file does not load the weights associated with the model, only the
539
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
540
+ """
541
+
542
+ GPT2_INPUTS_DOCSTRING = r"""
543
+ Args:
544
+ input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
545
+ `input_ids_length` = `sequence_length` if `past_key_values` is `None` else
546
+ `past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
547
+ sequence tokens in the vocabulary.
548
+
549
+ If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
550
+ `input_ids`.
551
+
552
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
553
+ [`PreTrainedTokenizer.__call__`] for details.
554
+
555
+ [What are input IDs?](../glossary#input-ids)
556
+ past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
557
+ Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
558
+ `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
559
+ their past given to this model should not be passed as `input_ids` as they have already been computed.
560
+ attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
561
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
562
+
563
+ - 1 for tokens that are **not masked**,
564
+ - 0 for tokens that are **masked**.
565
+
566
+ If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for
567
+ `past_key_values`. In other words, the `attention_mask` always has to have the length:
568
+ `len(past_key_values) + len(input_ids)`
569
+
570
+ [What are attention masks?](../glossary#attention-mask)
571
+ token_type_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
572
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
573
+ 1]`:
574
+
575
+ - 0 corresponds to a *sentence A* token,
576
+ - 1 corresponds to a *sentence B* token.
577
+
578
+ [What are token type IDs?](../glossary#token-type-ids)
579
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
580
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
581
+ config.max_position_embeddings - 1]`.
582
+
583
+ [What are position IDs?](../glossary#position-ids)
584
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
585
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
586
+
587
+ - 1 indicates the head is **not masked**,
588
+ - 0 indicates the head is **masked**.
589
+
590
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
591
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
592
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
593
+ model's internal embedding lookup matrix.
594
+
595
+ If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
596
+ `past_key_values`).
597
+ use_cache (`bool`, *optional*):
598
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
599
+ `past_key_values`).
600
+ output_attentions (`bool`, *optional*):
601
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
602
+ tensors for more detail.
603
+ output_hidden_states (`bool`, *optional*):
604
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
605
+ more detail.
606
+ return_dict (`bool`, *optional*):
607
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
608
+ """
609
+ PARALLELIZE_DOCSTRING = r"""
610
+ This is an experimental feature and is a subject to change at a moment's notice.
611
+
612
+ Uses a device map to distribute attention modules of the model across several devices. If no device map is given,
613
+ it will evenly distribute blocks across all devices.
614
+
615
+ Args:
616
+ device_map (`Dict[int, list]`, optional, defaults to None):
617
+ A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
618
+ automatically mapped to the first device (for esoteric reasons). That means that the first device should
619
+ have fewer attention modules mapped to it than other devices. For reference, the gpt2 models have the
620
+ following number of attention modules:
621
+
622
+ - gpt2: 12
623
+ - gpt2-medium: 24
624
+ - gpt2-large: 36
625
+ - gpt2-xl: 48
626
+
627
+ Example:
628
+
629
+ ```python
630
+ # Here is an example of a device map on a machine with 4 GPUs using gpt2-xl, which has a total of 48 attention modules:
631
+ model = GPT2LMHeadModel.from_pretrained("gpt2-xl")
632
+ device_map = {
633
+ 0: [0, 1, 2, 3, 4, 5, 6, 7, 8],
634
+ 1: [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21],
635
+ 2: [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34],
636
+ 3: [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47],
637
+ }
638
+ model.parallelize(device_map)
639
+ ```
640
+ """
641
+ DEPARALLELIZE_DOCSTRING = r"""
642
+ Moves the model to cpu from a model parallel state.
643
+
644
+ Example:
645
+
646
+ ```python
647
+ # On a 4 GPU machine with gpt2-large:
648
+ model = GPT2LMHeadModel.from_pretrained("gpt2-large")
649
+ device_map = {
650
+ 0: [0, 1, 2, 3, 4, 5, 6, 7],
651
+ 1: [8, 9, 10, 11, 12, 13, 14, 15],
652
+ 2: [16, 17, 18, 19, 20, 21, 22, 23],
653
+ 3: [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35],
654
+ }
655
+ model.parallelize(device_map) # Splits the model across several devices
656
+ model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
657
+ ```
658
+ """
659
+
660
+
661
+ @add_start_docstrings(
662
+ "The bare GPT2 Model transformer outputting raw hidden-states without any specific head on top.",
663
+ GPT2_START_DOCSTRING,
664
+ )
665
+ class GPT2Model(GPT2PreTrainedModel):
666
+ def __init__(self, config):
667
+ super().__init__(config)
668
+
669
+ self.embed_dim = config.hidden_size
670
+
671
+ self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
672
+ self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
673
+
674
+ self.drop = nn.Dropout(config.embd_pdrop)
675
+ self.h = nn.ModuleList([GPT2Block(config, layer_idx=i) for i in range(config.num_hidden_layers)])
676
+ self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
677
+
678
+ # Model parallel
679
+ self.model_parallel = False
680
+ self.device_map = None
681
+ self.gradient_checkpointing = False
682
+
683
+ # Initialize weights and apply final processing
684
+ self.post_init()
685
+
686
+ @add_start_docstrings(PARALLELIZE_DOCSTRING)
687
+ def parallelize(self, device_map=None):
688
+ # Check validity of device_map
689
+ warnings.warn(
690
+ "`GPT2Model.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your"
691
+ " model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
692
+ " `device_map` but it needs to be a dictionary module_name to device, so for instance {'h.0': 0, 'h.1': 1,"
693
+ " ...}",
694
+ FutureWarning,
695
+ )
696
+ self.device_map = (
697
+ get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
698
+ )
699
+ assert_device_map(self.device_map, len(self.h))
700
+ self.model_parallel = True
701
+ self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
702
+ self.last_device = "cuda:" + str(max(self.device_map.keys()))
703
+ self.wte = self.wte.to(self.first_device)
704
+ self.wpe = self.wpe.to(self.first_device)
705
+ # Load onto devices
706
+ for k, v in self.device_map.items():
707
+ for block in v:
708
+ cuda_device = "cuda:" + str(k)
709
+ self.h[block] = self.h[block].to(cuda_device)
710
+ # ln_f to last
711
+ self.ln_f = self.ln_f.to(self.last_device)
712
+
713
+ @add_start_docstrings(DEPARALLELIZE_DOCSTRING)
714
+ def deparallelize(self):
715
+ warnings.warn(
716
+ "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
717
+ FutureWarning,
718
+ )
719
+ self.model_parallel = False
720
+ self.device_map = None
721
+ self.first_device = "cpu"
722
+ self.last_device = "cpu"
723
+ self.wte = self.wte.to("cpu")
724
+ self.wpe = self.wpe.to("cpu")
725
+ for index in range(len(self.h)):
726
+ self.h[index] = self.h[index].to("cpu")
727
+ self.ln_f = self.ln_f.to("cpu")
728
+ torch.cuda.empty_cache()
729
+
730
+ def get_input_embeddings(self):
731
+ return self.wte
732
+
733
+ def set_input_embeddings(self, new_embeddings):
734
+ self.wte = new_embeddings
735
+
736
+ def _prune_heads(self, heads_to_prune):
737
+ """
738
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
739
+ """
740
+ for layer, heads in heads_to_prune.items():
741
+ self.h[layer].attn.prune_heads(heads)
742
+
743
+ @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
744
+ @add_code_sample_docstrings(
745
+ checkpoint=_CHECKPOINT_FOR_DOC,
746
+ output_type=BaseModelOutputWithPastAndCrossAttentions,
747
+ config_class=_CONFIG_FOR_DOC,
748
+ )
749
+ def forward(
750
+ self,
751
+ input_ids: Optional[torch.LongTensor] = None,
752
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
753
+ attention_mask: Optional[torch.FloatTensor] = None,
754
+ token_type_ids: Optional[torch.LongTensor] = None,
755
+ position_ids: Optional[torch.LongTensor] = None,
756
+ head_mask: Optional[torch.FloatTensor] = None,
757
+ inputs_embeds: Optional[torch.FloatTensor] = None,
758
+ encoder_hidden_states: Optional[torch.Tensor] = None,
759
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
760
+ use_cache: Optional[bool] = None,
761
+ output_attentions: Optional[bool] = None,
762
+ output_hidden_states: Optional[bool] = None,
763
+ return_dict: Optional[bool] = None,
764
+ ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
765
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
766
+ output_hidden_states = (
767
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
768
+ )
769
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
770
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
771
+
772
+ if input_ids is not None and inputs_embeds is not None:
773
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
774
+ elif input_ids is not None:
775
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
776
+ input_shape = input_ids.size()
777
+ input_ids = input_ids.view(-1, input_shape[-1])
778
+ batch_size = input_ids.shape[0]
779
+ elif inputs_embeds is not None:
780
+ input_shape = inputs_embeds.size()[:-1]
781
+ batch_size = inputs_embeds.shape[0]
782
+ else:
783
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
784
+
785
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
786
+
787
+ if token_type_ids is not None:
788
+ token_type_ids = token_type_ids.view(-1, input_shape[-1])
789
+
790
+ if past_key_values is None:
791
+ past_length = 0
792
+ past_key_values = tuple([None] * len(self.h))
793
+ else:
794
+ past_length = past_key_values[0][0].size(-2)
795
+ if position_ids is None:
796
+ position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
797
+ position_ids = position_ids.unsqueeze(0)
798
+
799
+ # GPT2Attention mask.
800
+ if attention_mask is not None:
801
+ if batch_size <= 0:
802
+ raise ValueError("batch_size has to be defined and > 0")
803
+ attention_mask = attention_mask.view(batch_size, -1)
804
+ # We create a 3D attention mask from a 2D tensor mask.
805
+ # Sizes are [batch_size, 1, 1, to_seq_length]
806
+ # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
807
+ # this attention mask is more simple than the triangular masking of causal attention
808
+ # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
809
+ attention_mask = attention_mask[:, None, None, :]
810
+
811
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
812
+ # masked positions, this operation will create a tensor which is 0.0 for
813
+ # positions we want to attend and the dtype's smallest value for masked positions.
814
+ # Since we are adding it to the raw scores before the softmax, this is
815
+ # effectively the same as removing these entirely.
816
+ attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
817
+ attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
818
+
819
+ # If a 2D or 3D attention mask is provided for the cross-attention
820
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
821
+ if self.config.add_cross_attention and encoder_hidden_states is not None:
822
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
823
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
824
+ if encoder_attention_mask is None:
825
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
826
+ encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
827
+ else:
828
+ encoder_attention_mask = None
829
+
830
+ # Prepare head mask if needed
831
+ # 1.0 in head_mask indicate we keep the head
832
+ # attention_probs has shape bsz x n_heads x N x N
833
+ # head_mask has shape n_layer x batch x n_heads x N x N
834
+ head_mask = self.get_head_mask(head_mask, self.config.n_layer)
835
+
836
+ if inputs_embeds is None:
837
+ inputs_embeds = self.wte(input_ids)
838
+ position_embeds = self.wpe(position_ids)
839
+ hidden_states = inputs_embeds + position_embeds
840
+
841
+ if token_type_ids is not None:
842
+ token_type_embeds = self.wte(token_type_ids)
843
+ hidden_states = hidden_states + token_type_embeds
844
+
845
+ hidden_states = self.drop(hidden_states)
846
+
847
+ output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
848
+
849
+ if self.gradient_checkpointing and self.training:
850
+ if use_cache:
851
+ logger.warning_once(
852
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
853
+ )
854
+ use_cache = False
855
+
856
+ presents = () if use_cache else None
857
+ all_self_attentions = () if output_attentions else None
858
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
859
+ all_hidden_states = () if output_hidden_states else None
860
+ for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
861
+ # Model parallel
862
+ if self.model_parallel:
863
+ torch.cuda.set_device(hidden_states.device)
864
+ # Ensure layer_past is on same device as hidden_states (might not be correct)
865
+ if layer_past is not None:
866
+ layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
867
+ # Ensure that attention_mask is always on the same device as hidden_states
868
+ if attention_mask is not None:
869
+ attention_mask = attention_mask.to(hidden_states.device)
870
+ if isinstance(head_mask, torch.Tensor):
871
+ head_mask = head_mask.to(hidden_states.device)
872
+ if output_hidden_states:
873
+ all_hidden_states = all_hidden_states + (hidden_states,)
874
+
875
+ if self.gradient_checkpointing and self.training:
876
+ outputs = self._gradient_checkpointing_func(
877
+ block.__call__,
878
+ hidden_states,
879
+ None,
880
+ attention_mask,
881
+ head_mask[i],
882
+ encoder_hidden_states,
883
+ encoder_attention_mask,
884
+ use_cache,
885
+ output_attentions,
886
+ )
887
+ else:
888
+ outputs = block(
889
+ hidden_states,
890
+ layer_past=layer_past,
891
+ attention_mask=attention_mask,
892
+ head_mask=head_mask[i],
893
+ encoder_hidden_states=encoder_hidden_states,
894
+ encoder_attention_mask=encoder_attention_mask,
895
+ use_cache=use_cache,
896
+ output_attentions=output_attentions,
897
+ )
898
+
899
+ hidden_states = outputs[0]
900
+ if use_cache is True:
901
+ presents = presents + (outputs[1],)
902
+
903
+ if output_attentions:
904
+ all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
905
+ if self.config.add_cross_attention:
906
+ all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
907
+
908
+ # Model Parallel: If it's the last layer for that device, put things on the next device
909
+ if self.model_parallel:
910
+ for k, v in self.device_map.items():
911
+ if i == v[-1] and "cuda:" + str(k) != self.last_device:
912
+ hidden_states = hidden_states.to("cuda:" + str(k + 1))
913
+
914
+ hidden_states = self.ln_f(hidden_states)
915
+
916
+ hidden_states = hidden_states.view(output_shape)
917
+ # Add last hidden state
918
+ if output_hidden_states:
919
+ all_hidden_states = all_hidden_states + (hidden_states,)
920
+
921
+ if not return_dict:
922
+ return tuple(
923
+ v
924
+ for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
925
+ if v is not None
926
+ )
927
+
928
+ return BaseModelOutputWithPastAndCrossAttentions(
929
+ last_hidden_state=hidden_states,
930
+ past_key_values=presents,
931
+ hidden_states=all_hidden_states,
932
+ attentions=all_self_attentions,
933
+ cross_attentions=all_cross_attentions,
934
+ )
935
+
936
+
937
+ @add_start_docstrings(
938
+ """
939
+ The GPT2 Model transformer with a language modeling head on top (linear layer with weights tied to the input
940
+ embeddings).
941
+ """,
942
+ GPT2_START_DOCSTRING,
943
+ )
944
+ class GPT2LMHeadModel(GPT2PreTrainedModel):
945
+ _tied_weights_keys = ["lm_head.weight"]
946
+
947
+ def __init__(self, config):
948
+ super().__init__(config)
949
+ self.transformer = GPT2Model(config)
950
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
951
+
952
+ # Model parallel
953
+ self.model_parallel = False
954
+ self.device_map = None
955
+
956
+ # Initialize weights and apply final processing
957
+ self.post_init()
958
+
959
+ @add_start_docstrings(PARALLELIZE_DOCSTRING)
960
+ def parallelize(self, device_map=None):
961
+ warnings.warn(
962
+ "`GPT2LMHeadModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load"
963
+ " your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
964
+ " `device_map` but it needs to be a dictionary module_name to device, so for instance {'transformer.h.0':"
965
+ " 0, 'transformer.h.1': 1, ...}",
966
+ FutureWarning,
967
+ )
968
+ self.device_map = (
969
+ get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
970
+ if device_map is None
971
+ else device_map
972
+ )
973
+ assert_device_map(self.device_map, len(self.transformer.h))
974
+ self.transformer.parallelize(self.device_map)
975
+ self.lm_head = self.lm_head.to(self.transformer.first_device)
976
+ self.model_parallel = True
977
+
978
+ @add_start_docstrings(DEPARALLELIZE_DOCSTRING)
979
+ def deparallelize(self):
980
+ warnings.warn(
981
+ "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
982
+ FutureWarning,
983
+ )
984
+ self.transformer.deparallelize()
985
+ self.transformer = self.transformer.to("cpu")
986
+ self.lm_head = self.lm_head.to("cpu")
987
+ self.model_parallel = False
988
+ torch.cuda.empty_cache()
989
+
990
+ def get_output_embeddings(self):
991
+ return self.lm_head
992
+
993
+ def set_output_embeddings(self, new_embeddings):
994
+ self.lm_head = new_embeddings
995
+
996
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
997
+ token_type_ids = kwargs.get("token_type_ids", None)
998
+ # Omit tokens covered by past_key_values
999
+ if past_key_values:
1000
+ past_length = past_key_values[0][0].shape[2]
1001
+
1002
+ # Some generation methods already pass only the last input ID
1003
+ if input_ids.shape[1] > past_length:
1004
+ remove_prefix_length = past_length
1005
+ else:
1006
+ # Default to old behavior: keep only final ID
1007
+ remove_prefix_length = input_ids.shape[1] - 1
1008
+
1009
+ input_ids = input_ids[:, remove_prefix_length:]
1010
+ if token_type_ids is not None:
1011
+ token_type_ids = token_type_ids[:, -input_ids.shape[1] :]
1012
+
1013
+ attention_mask = kwargs.get("attention_mask", None)
1014
+ position_ids = kwargs.get("position_ids", None)
1015
+
1016
+ if attention_mask is not None and position_ids is None:
1017
+ # create position_ids on the fly for batch generation
1018
+ position_ids = attention_mask.long().cumsum(-1) - 1
1019
+ position_ids.masked_fill_(attention_mask == 0, 1)
1020
+ if past_key_values:
1021
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1022
+ else:
1023
+ position_ids = None
1024
+
1025
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1026
+ if inputs_embeds is not None and past_key_values is None:
1027
+ model_inputs = {"inputs_embeds": inputs_embeds}
1028
+ else:
1029
+ model_inputs = {"input_ids": input_ids}
1030
+
1031
+ model_inputs.update(
1032
+ {
1033
+ "past_key_values": past_key_values,
1034
+ "use_cache": kwargs.get("use_cache"),
1035
+ "position_ids": position_ids,
1036
+ "attention_mask": attention_mask,
1037
+ "token_type_ids": token_type_ids,
1038
+ }
1039
+ )
1040
+
1041
+ return model_inputs
1042
+
1043
+ @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
1044
+ @add_code_sample_docstrings(
1045
+ checkpoint=_CHECKPOINT_FOR_DOC,
1046
+ output_type=CausalLMOutputWithCrossAttentions,
1047
+ config_class=_CONFIG_FOR_DOC,
1048
+ )
1049
+ def forward(
1050
+ self,
1051
+ input_ids: Optional[torch.LongTensor] = None,
1052
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
1053
+ attention_mask: Optional[torch.FloatTensor] = None,
1054
+ token_type_ids: Optional[torch.LongTensor] = None,
1055
+ position_ids: Optional[torch.LongTensor] = None,
1056
+ head_mask: Optional[torch.FloatTensor] = None,
1057
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1058
+ encoder_hidden_states: Optional[torch.Tensor] = None,
1059
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
1060
+ labels: Optional[torch.LongTensor] = None,
1061
+ use_cache: Optional[bool] = None,
1062
+ output_attentions: Optional[bool] = None,
1063
+ output_hidden_states: Optional[bool] = None,
1064
+ return_dict: Optional[bool] = None,
1065
+ ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
1066
+ r"""
1067
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1068
+ Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
1069
+ `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
1070
+ are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
1071
+ """
1072
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1073
+
1074
+ transformer_outputs = self.transformer(
1075
+ input_ids,
1076
+ past_key_values=past_key_values,
1077
+ attention_mask=attention_mask,
1078
+ token_type_ids=token_type_ids,
1079
+ position_ids=position_ids,
1080
+ head_mask=head_mask,
1081
+ inputs_embeds=inputs_embeds,
1082
+ encoder_hidden_states=encoder_hidden_states,
1083
+ encoder_attention_mask=encoder_attention_mask,
1084
+ use_cache=use_cache,
1085
+ output_attentions=output_attentions,
1086
+ output_hidden_states=output_hidden_states,
1087
+ return_dict=return_dict,
1088
+ )
1089
+ hidden_states = transformer_outputs[0]
1090
+
1091
+ # Set device for model parallelism
1092
+ if self.model_parallel:
1093
+ torch.cuda.set_device(self.transformer.first_device)
1094
+ hidden_states = hidden_states.to(self.lm_head.weight.device)
1095
+
1096
+ lm_logits = self.lm_head(hidden_states)
1097
+
1098
+ loss = None
1099
+ if labels is not None:
1100
+ # move labels to correct device to enable model parallelism
1101
+ labels = labels.to(lm_logits.device)
1102
+ # Shift so that tokens < n predict n
1103
+ shift_logits = lm_logits[..., :-1, :].contiguous()
1104
+ shift_labels = labels[..., 1:].contiguous()
1105
+ # Flatten the tokens
1106
+ loss_fct = CrossEntropyLoss()
1107
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
1108
+
1109
+ if not return_dict:
1110
+ output = (lm_logits,) + transformer_outputs[1:]
1111
+ return ((loss,) + output) if loss is not None else output
1112
+
1113
+ return CausalLMOutputWithCrossAttentions(
1114
+ loss=loss,
1115
+ logits=lm_logits,
1116
+ past_key_values=transformer_outputs.past_key_values,
1117
+ hidden_states=transformer_outputs.hidden_states,
1118
+ attentions=transformer_outputs.attentions,
1119
+ cross_attentions=transformer_outputs.cross_attentions,
1120
+ )
1121
+
1122
+ @staticmethod
1123
+ def _reorder_cache(
1124
+ past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
1125
+ ) -> Tuple[Tuple[torch.Tensor]]:
1126
+ """
1127
+ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
1128
+ [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
1129
+ beam_idx at every generation step.
1130
+ """
1131
+ return tuple(
1132
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
1133
+ for layer_past in past_key_values
1134
+ )
1135
+
1136
+
1137
+ @add_start_docstrings(
1138
+ """
1139
+ The GPT2 Model transformer with a language modeling and a multiple-choice classification head on top e.g. for
1140
+ RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the
1141
+ input embeddings, the classification head takes as input the input of a specified classification token index in the
1142
+ input sequence).
1143
+ """,
1144
+ GPT2_START_DOCSTRING,
1145
+ )
1146
+ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
1147
+ _tied_weights_keys = ["lm_head.weight"]
1148
+
1149
+ def __init__(self, config):
1150
+ super().__init__(config)
1151
+ config.num_labels = 1
1152
+ self.transformer = GPT2Model(config)
1153
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
1154
+ self.multiple_choice_head = SequenceSummary(config)
1155
+
1156
+ # Model parallel
1157
+ self.model_parallel = False
1158
+ self.device_map = None
1159
+
1160
+ # Initialize weights and apply final processing
1161
+ self.post_init()
1162
+
1163
+ @add_start_docstrings(PARALLELIZE_DOCSTRING)
1164
+ def parallelize(self, device_map=None):
1165
+ warnings.warn(
1166
+ "`GPT2DoubleHeadsModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should"
1167
+ " load your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your"
1168
+ " own `device_map` but it needs to be a dictionary module_name to device, so for instance"
1169
+ " {'transformer.h.0': 0, 'transformer.h.1': 1, ...}",
1170
+ FutureWarning,
1171
+ )
1172
+ self.device_map = (
1173
+ get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
1174
+ if device_map is None
1175
+ else device_map
1176
+ )
1177
+ assert_device_map(self.device_map, len(self.transformer.h))
1178
+ self.transformer.parallelize(self.device_map)
1179
+ self.lm_head = self.lm_head.to(self.transformer.first_device)
1180
+ self.multiple_choice_head = self.multiple_choice_head.to(self.transformer.first_device)
1181
+ self.model_parallel = True
1182
+
1183
+ @add_start_docstrings(DEPARALLELIZE_DOCSTRING)
1184
+ def deparallelize(self):
1185
+ warnings.warn(
1186
+ "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
1187
+ FutureWarning,
1188
+ )
1189
+ self.transformer.deparallelize()
1190
+ self.transformer = self.transformer.to("cpu")
1191
+ self.lm_head = self.lm_head.to("cpu")
1192
+ self.multiple_choice_head = self.multiple_choice_head.to("cpu")
1193
+ self.model_parallel = False
1194
+ torch.cuda.empty_cache()
1195
+
1196
+ def get_output_embeddings(self):
1197
+ return self.lm_head
1198
+
1199
+ def set_output_embeddings(self, new_embeddings):
1200
+ self.lm_head = new_embeddings
1201
+
1202
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
1203
+ token_type_ids = kwargs.get("token_type_ids", None)
1204
+ # Omit tokens covered by past_key_values
1205
+ if past_key_values:
1206
+ past_length = past_key_values[0][0].shape[2]
1207
+
1208
+ # Some generation methods already pass only the last input ID
1209
+ if input_ids.shape[1] > past_length:
1210
+ remove_prefix_length = past_length
1211
+ else:
1212
+ # Default to old behavior: keep only final ID
1213
+ remove_prefix_length = input_ids.shape[1] - 1
1214
+
1215
+ input_ids = input_ids[:, remove_prefix_length:]
1216
+ if token_type_ids is not None:
1217
+ token_type_ids = token_type_ids[:, -input_ids.shape[1] :]
1218
+
1219
+ attention_mask = kwargs.get("attention_mask", None)
1220
+ position_ids = kwargs.get("position_ids", None)
1221
+
1222
+ if attention_mask is not None and position_ids is None:
1223
+ # create position_ids on the fly for batch generation
1224
+ position_ids = attention_mask.long().cumsum(-1) - 1
1225
+ position_ids.masked_fill_(attention_mask == 0, 1)
1226
+ if past_key_values:
1227
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1228
+ else:
1229
+ position_ids = None
1230
+
1231
+ return {
1232
+ "input_ids": input_ids,
1233
+ "past_key_values": past_key_values,
1234
+ "use_cache": kwargs.get("use_cache"),
1235
+ "position_ids": position_ids,
1236
+ "attention_mask": attention_mask,
1237
+ "token_type_ids": token_type_ids,
1238
+ }
1239
+
1240
+ @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
1241
+ @replace_return_docstrings(output_type=GPT2DoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC)
1242
+ def forward(
1243
+ self,
1244
+ input_ids: Optional[torch.LongTensor] = None,
1245
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
1246
+ attention_mask: Optional[torch.FloatTensor] = None,
1247
+ token_type_ids: Optional[torch.LongTensor] = None,
1248
+ position_ids: Optional[torch.LongTensor] = None,
1249
+ head_mask: Optional[torch.FloatTensor] = None,
1250
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1251
+ mc_token_ids: Optional[torch.LongTensor] = None,
1252
+ labels: Optional[torch.LongTensor] = None,
1253
+ mc_labels: Optional[torch.LongTensor] = None,
1254
+ use_cache: Optional[bool] = None,
1255
+ output_attentions: Optional[bool] = None,
1256
+ output_hidden_states: Optional[bool] = None,
1257
+ return_dict: Optional[bool] = None,
1258
+ **kwargs,
1259
+ ) -> Union[Tuple, GPT2DoubleHeadsModelOutput]:
1260
+ r"""
1261
+ mc_token_ids (`torch.LongTensor` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input):
1262
+ Index of the classification token in each input sequence. Selected in the range `[0, input_ids.size(-1) -
1263
+ 1]`.
1264
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1265
+ Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
1266
+ `labels = input_ids`. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to
1267
+ `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]`
1268
+ mc_labels (`torch.LongTensor` of shape `(batch_size)`, *optional*):
1269
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
1270
+ where *num_choices* is the size of the second dimension of the input tensors. (see *input_ids* above)
1271
+
1272
+ Return:
1273
+
1274
+ Example:
1275
+
1276
+ ```python
1277
+ >>> import torch
1278
+ >>> from transformers import AutoTokenizer, GPT2DoubleHeadsModel
1279
+
1280
+ >>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
1281
+ >>> model = GPT2DoubleHeadsModel.from_pretrained("gpt2")
1282
+
1283
+ >>> # Add a [CLS] to the vocabulary (we should train it also!)
1284
+ >>> num_added_tokens = tokenizer.add_special_tokens({"cls_token": "[CLS]"})
1285
+ >>> # Update the model embeddings with the new vocabulary size
1286
+ >>> embedding_layer = model.resize_token_embeddings(len(tokenizer))
1287
+
1288
+ >>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
1289
+ >>> encoded_choices = [tokenizer.encode(s) for s in choices]
1290
+ >>> cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices]
1291
+
1292
+ >>> input_ids = torch.tensor(encoded_choices).unsqueeze(0) # Batch size: 1, number of choices: 2
1293
+ >>> mc_token_ids = torch.tensor([cls_token_location]) # Batch size: 1
1294
+
1295
+ >>> outputs = model(input_ids, mc_token_ids=mc_token_ids)
1296
+ >>> lm_logits = outputs.logits
1297
+ >>> mc_logits = outputs.mc_logits
1298
+ ```"""
1299
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1300
+
1301
+ transformer_outputs = self.transformer(
1302
+ input_ids,
1303
+ past_key_values=past_key_values,
1304
+ attention_mask=attention_mask,
1305
+ token_type_ids=token_type_ids,
1306
+ position_ids=position_ids,
1307
+ head_mask=head_mask,
1308
+ inputs_embeds=inputs_embeds,
1309
+ use_cache=use_cache,
1310
+ output_attentions=output_attentions,
1311
+ output_hidden_states=output_hidden_states,
1312
+ return_dict=return_dict,
1313
+ )
1314
+
1315
+ hidden_states = transformer_outputs[0]
1316
+
1317
+ # Set device for model parallelism
1318
+ if self.model_parallel:
1319
+ torch.cuda.set_device(self.transformer.first_device)
1320
+ hidden_states = hidden_states.to(self.lm_head.weight.device)
1321
+
1322
+ lm_logits = self.lm_head(hidden_states)
1323
+ mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
1324
+
1325
+ mc_loss = None
1326
+ if mc_labels is not None:
1327
+ loss_fct = CrossEntropyLoss()
1328
+ mc_loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1))
1329
+ lm_loss = None
1330
+ if labels is not None:
1331
+ labels = labels.to(lm_logits.device)
1332
+ shift_logits = lm_logits[..., :-1, :].contiguous()
1333
+ shift_labels = labels[..., 1:].contiguous()
1334
+ loss_fct = CrossEntropyLoss()
1335
+ lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
1336
+
1337
+ if not return_dict:
1338
+ output = (lm_logits, mc_logits) + transformer_outputs[1:]
1339
+ if mc_loss is not None:
1340
+ output = (mc_loss,) + output
1341
+ return ((lm_loss,) + output) if lm_loss is not None else output
1342
+
1343
+ return GPT2DoubleHeadsModelOutput(
1344
+ loss=lm_loss,
1345
+ mc_loss=mc_loss,
1346
+ logits=lm_logits,
1347
+ mc_logits=mc_logits,
1348
+ past_key_values=transformer_outputs.past_key_values,
1349
+ hidden_states=transformer_outputs.hidden_states,
1350
+ attentions=transformer_outputs.attentions,
1351
+ )
1352
+
1353
+ @staticmethod
1354
+ def _reorder_cache(
1355
+ past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
1356
+ ) -> Tuple[Tuple[torch.Tensor]]:
1357
+ """
1358
+ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
1359
+ [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
1360
+ beam_idx at every generation step.
1361
+ """
1362
+ return tuple(
1363
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
1364
+ for layer_past in past_key_values
1365
+ )
1366
+
1367
+
1368
+ @add_start_docstrings(
1369
+ """
1370
+ The GPT2 Model transformer with a sequence classification head on top (linear layer).
1371
+
1372
+ [`GPT2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1373
+ (e.g. GPT-1) do.
1374
+
1375
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1376
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1377
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1378
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1379
+ each row of the batch).
1380
+ """,
1381
+ GPT2_START_DOCSTRING,
1382
+ )
1383
+ class GPT2ForSequenceClassification(GPT2PreTrainedModel):
1384
+ def __init__(self, config):
1385
+ super().__init__(config)
1386
+ self.num_labels = config.num_labels
1387
+ self.transformer = GPT2Model(config)
1388
+ self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
1389
+
1390
+ # Model parallel
1391
+ self.model_parallel = False
1392
+ self.device_map = None
1393
+
1394
+ # Initialize weights and apply final processing
1395
+ self.post_init()
1396
+
1397
+ @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
1398
+ @add_code_sample_docstrings(
1399
+ checkpoint="microsoft/DialogRPT-updown",
1400
+ output_type=SequenceClassifierOutputWithPast,
1401
+ config_class=_CONFIG_FOR_DOC,
1402
+ )
1403
+ def forward(
1404
+ self,
1405
+ input_ids: Optional[torch.LongTensor] = None,
1406
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
1407
+ attention_mask: Optional[torch.FloatTensor] = None,
1408
+ token_type_ids: Optional[torch.LongTensor] = None,
1409
+ position_ids: Optional[torch.LongTensor] = None,
1410
+ head_mask: Optional[torch.FloatTensor] = None,
1411
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1412
+ labels: Optional[torch.LongTensor] = None,
1413
+ use_cache: Optional[bool] = None,
1414
+ output_attentions: Optional[bool] = None,
1415
+ output_hidden_states: Optional[bool] = None,
1416
+ return_dict: Optional[bool] = None,
1417
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1418
+ r"""
1419
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1420
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1421
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1422
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1423
+ """
1424
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1425
+
1426
+ transformer_outputs = self.transformer(
1427
+ input_ids,
1428
+ past_key_values=past_key_values,
1429
+ attention_mask=attention_mask,
1430
+ token_type_ids=token_type_ids,
1431
+ position_ids=position_ids,
1432
+ head_mask=head_mask,
1433
+ inputs_embeds=inputs_embeds,
1434
+ use_cache=use_cache,
1435
+ output_attentions=output_attentions,
1436
+ output_hidden_states=output_hidden_states,
1437
+ return_dict=return_dict,
1438
+ )
1439
+ hidden_states = transformer_outputs[0]
1440
+ logits = self.score(hidden_states)
1441
+
1442
+ if input_ids is not None:
1443
+ batch_size, sequence_length = input_ids.shape[:2]
1444
+ else:
1445
+ batch_size, sequence_length = inputs_embeds.shape[:2]
1446
+
1447
+ assert (
1448
+ self.config.pad_token_id is not None or batch_size == 1
1449
+ ), "Cannot handle batch sizes > 1 if no padding token is defined."
1450
+ if self.config.pad_token_id is None:
1451
+ sequence_lengths = -1
1452
+ else:
1453
+ if input_ids is not None:
1454
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1455
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1456
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1457
+ sequence_lengths = sequence_lengths.to(logits.device)
1458
+ else:
1459
+ sequence_lengths = -1
1460
+ logger.warning(
1461
+ f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
1462
+ "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
1463
+ )
1464
+
1465
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1466
+
1467
+ loss = None
1468
+ if labels is not None:
1469
+ if self.config.problem_type is None:
1470
+ if self.num_labels == 1:
1471
+ self.config.problem_type = "regression"
1472
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1473
+ self.config.problem_type = "single_label_classification"
1474
+ else:
1475
+ self.config.problem_type = "multi_label_classification"
1476
+
1477
+ if self.config.problem_type == "regression":
1478
+ loss_fct = MSELoss()
1479
+ if self.num_labels == 1:
1480
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1481
+ else:
1482
+ loss = loss_fct(pooled_logits, labels)
1483
+ elif self.config.problem_type == "single_label_classification":
1484
+ loss_fct = CrossEntropyLoss()
1485
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1486
+ elif self.config.problem_type == "multi_label_classification":
1487
+ loss_fct = BCEWithLogitsLoss()
1488
+ loss = loss_fct(pooled_logits, labels)
1489
+ if not return_dict:
1490
+ output = (pooled_logits,) + transformer_outputs[1:]
1491
+ return ((loss,) + output) if loss is not None else output
1492
+
1493
+ return SequenceClassifierOutputWithPast(
1494
+ loss=loss,
1495
+ logits=pooled_logits,
1496
+ past_key_values=transformer_outputs.past_key_values,
1497
+ hidden_states=transformer_outputs.hidden_states,
1498
+ attentions=transformer_outputs.attentions,
1499
+ )
1500
+
1501
+
1502
+ @add_start_docstrings(
1503
+ """
1504
+ GPT2 Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
1505
+ Named-Entity-Recognition (NER) tasks.
1506
+ """,
1507
+ GPT2_START_DOCSTRING,
1508
+ )
1509
+ class GPT2ForTokenClassification(GPT2PreTrainedModel):
1510
+ def __init__(self, config):
1511
+ super().__init__(config)
1512
+ self.num_labels = config.num_labels
1513
+
1514
+ self.transformer = GPT2Model(config)
1515
+ if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
1516
+ classifier_dropout = config.classifier_dropout
1517
+ elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
1518
+ classifier_dropout = config.hidden_dropout
1519
+ else:
1520
+ classifier_dropout = 0.1
1521
+ self.dropout = nn.Dropout(classifier_dropout)
1522
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1523
+
1524
+ # Model parallel
1525
+ self.model_parallel = False
1526
+ self.device_map = None
1527
+
1528
+ # Initialize weights and apply final processing
1529
+ self.post_init()
1530
+
1531
+ @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
1532
+ # fmt: off
1533
+ @add_code_sample_docstrings(
1534
+ checkpoint="brad1141/gpt2-finetuned-comp2",
1535
+ output_type=TokenClassifierOutput,
1536
+ config_class=_CONFIG_FOR_DOC,
1537
+ expected_loss=0.25,
1538
+ expected_output=[
1539
+ "Lead",
1540
+ "Lead",
1541
+ "Lead",
1542
+ "Position",
1543
+ "Lead",
1544
+ "Lead",
1545
+ "Lead",
1546
+ "Lead",
1547
+ "Lead",
1548
+ "Lead",
1549
+ "Lead",
1550
+ "Lead",
1551
+ ],
1552
+ )
1553
+ # fmt: on
1554
+ def forward(
1555
+ self,
1556
+ input_ids: Optional[torch.LongTensor] = None,
1557
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
1558
+ attention_mask: Optional[torch.FloatTensor] = None,
1559
+ token_type_ids: Optional[torch.LongTensor] = None,
1560
+ position_ids: Optional[torch.LongTensor] = None,
1561
+ head_mask: Optional[torch.FloatTensor] = None,
1562
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1563
+ labels: Optional[torch.LongTensor] = None,
1564
+ use_cache: Optional[bool] = None,
1565
+ output_attentions: Optional[bool] = None,
1566
+ output_hidden_states: Optional[bool] = None,
1567
+ return_dict: Optional[bool] = None,
1568
+ ) -> Union[Tuple, TokenClassifierOutput]:
1569
+ r"""
1570
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1571
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1572
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1573
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1574
+ """
1575
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1576
+
1577
+ transformer_outputs = self.transformer(
1578
+ input_ids,
1579
+ past_key_values=past_key_values,
1580
+ attention_mask=attention_mask,
1581
+ token_type_ids=token_type_ids,
1582
+ position_ids=position_ids,
1583
+ head_mask=head_mask,
1584
+ inputs_embeds=inputs_embeds,
1585
+ use_cache=use_cache,
1586
+ output_attentions=output_attentions,
1587
+ output_hidden_states=output_hidden_states,
1588
+ return_dict=return_dict,
1589
+ )
1590
+
1591
+ hidden_states = transformer_outputs[0]
1592
+ hidden_states = self.dropout(hidden_states)
1593
+ logits = self.classifier(hidden_states)
1594
+
1595
+ loss = None
1596
+ if labels is not None:
1597
+ labels = labels.to(logits.device)
1598
+ loss_fct = CrossEntropyLoss()
1599
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1600
+
1601
+ if not return_dict:
1602
+ output = (logits,) + transformer_outputs[2:]
1603
+ return ((loss,) + output) if loss is not None else output
1604
+
1605
+ return TokenClassifierOutput(
1606
+ loss=loss,
1607
+ logits=logits,
1608
+ hidden_states=transformer_outputs.hidden_states,
1609
+ attentions=transformer_outputs.attentions,
1610
+ )
1611
+
1612
+
1613
+ @add_start_docstrings(
1614
+ """
1615
+ The GPT-2 Model transformer with a span classification head on top for extractive question-answering tasks like
1616
+ SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
1617
+ """,
1618
+ GPT2_START_DOCSTRING,
1619
+ )
1620
+ class GPT2ForQuestionAnswering(GPT2PreTrainedModel):
1621
+ def __init__(self, config):
1622
+ super().__init__(config)
1623
+ self.num_labels = config.num_labels
1624
+ self.transformer = GPT2Model(config)
1625
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
1626
+
1627
+ # Model parallel
1628
+ self.model_parallel = False
1629
+ self.device_map = None
1630
+
1631
+ # Initialize weights and apply final processing
1632
+ self.post_init()
1633
+
1634
+ @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1635
+ @add_code_sample_docstrings(
1636
+ checkpoint=_CHECKPOINT_FOR_DOC,
1637
+ output_type=QuestionAnsweringModelOutput,
1638
+ config_class=_CONFIG_FOR_DOC,
1639
+ real_checkpoint=_CHECKPOINT_FOR_DOC,
1640
+ )
1641
+ def forward(
1642
+ self,
1643
+ input_ids: Optional[torch.LongTensor] = None,
1644
+ attention_mask: Optional[torch.FloatTensor] = None,
1645
+ token_type_ids: Optional[torch.LongTensor] = None,
1646
+ position_ids: Optional[torch.LongTensor] = None,
1647
+ head_mask: Optional[torch.FloatTensor] = None,
1648
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1649
+ start_positions: Optional[torch.LongTensor] = None,
1650
+ end_positions: Optional[torch.LongTensor] = None,
1651
+ output_attentions: Optional[bool] = None,
1652
+ output_hidden_states: Optional[bool] = None,
1653
+ return_dict: Optional[bool] = None,
1654
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1655
+ r"""
1656
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1657
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1658
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1659
+ are not taken into account for computing the loss.
1660
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1661
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1662
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1663
+ are not taken into account for computing the loss.
1664
+ """
1665
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1666
+
1667
+ outputs = self.transformer(
1668
+ input_ids,
1669
+ attention_mask=attention_mask,
1670
+ token_type_ids=token_type_ids,
1671
+ position_ids=position_ids,
1672
+ head_mask=head_mask,
1673
+ inputs_embeds=inputs_embeds,
1674
+ output_attentions=output_attentions,
1675
+ output_hidden_states=output_hidden_states,
1676
+ return_dict=return_dict,
1677
+ )
1678
+
1679
+ sequence_output = outputs[0]
1680
+
1681
+ logits = self.qa_outputs(sequence_output)
1682
+ start_logits, end_logits = logits.split(1, dim=-1)
1683
+ start_logits = start_logits.squeeze(-1).contiguous()
1684
+ end_logits = end_logits.squeeze(-1).contiguous()
1685
+
1686
+ total_loss = None
1687
+ if start_positions is not None and end_positions is not None:
1688
+ # If we are on multi-GPU, split add a dimension
1689
+ if len(start_positions.size()) > 1:
1690
+ start_positions = start_positions.squeeze(-1).to(start_logits.device)
1691
+ if len(end_positions.size()) > 1:
1692
+ end_positions = end_positions.squeeze(-1).to(end_logits.device)
1693
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1694
+ ignored_index = start_logits.size(1)
1695
+ start_positions = start_positions.clamp(0, ignored_index)
1696
+ end_positions = end_positions.clamp(0, ignored_index)
1697
+
1698
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1699
+ start_loss = loss_fct(start_logits, start_positions)
1700
+ end_loss = loss_fct(end_logits, end_positions)
1701
+ total_loss = (start_loss + end_loss) / 2
1702
+
1703
+ if not return_dict:
1704
+ output = (start_logits, end_logits) + outputs[2:]
1705
+ return ((total_loss,) + output) if total_loss is not None else output
1706
+
1707
+ return QuestionAnsweringModelOutput(
1708
+ loss=total_loss,
1709
+ start_logits=start_logits,
1710
+ end_logits=end_logits,
1711
+ hidden_states=outputs.hidden_states,
1712
+ attentions=outputs.attentions,
1713
+ )