Text Generation
English
Eval Results
d-matrix commited on
Commit
e394a6e
1 Parent(s): 31a5ab8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -12
README.md CHANGED
@@ -49,32 +49,29 @@ Prerequisites:
49
  - clone this repo. "cd" to the cloned repo.
50
  ```python
51
  >>> import os
52
- >>> import torch
53
  >>> from mltools import dmx
54
- >>> from transformers import pipeline,AutoModelForCausalLM
55
  >>> import evaluate
56
  >>> from datasets import load_dataset
57
 
58
- # Get model
59
- >>> my_hf_token = os.environ.get("Dmatrix_HF_Token")
60
- >>> device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
61
 
62
  >>> pipe = pipeline(
63
  >>> "text-generation",
64
  >>> model="d-matrix/distilgpt2",
65
- >>> device=device,
66
  >>> use_auth_token=my_hf_token,
 
 
 
 
 
67
  >>> )
68
- >>> pipe.model = dmx.Model(pipe.model,monkey_patched=False,hf=True,input_names=["input_ids", "labels"])
69
 
70
- # Configure quantization formats
71
- >>> pipe.model.transform('FALLBACK.yaml')
72
 
73
- # Evaluate
74
  >>> perplexity = evaluate.load("d-matrix/dmx_perplexity", module_type="metric")
75
  >>> input_texts = load_dataset("ptb_text_only", "penn_treebank", split="test")["sentence"]
76
- >>> pipe.model.eval()
77
- >>> results = perplexity.compute(model=pipe.model.body,references=input_texts)
78
  >>> print(results)
79
  {'loss': 4.164604187011719, 'perplexity': 64.36720275878906}
80
  ```
 
49
  - clone this repo. "cd" to the cloned repo.
50
  ```python
51
  >>> import os
 
52
  >>> from mltools import dmx
53
+ >>> from transformers import pipeline
54
  >>> import evaluate
55
  >>> from datasets import load_dataset
56
 
57
+ >>> my_hf_token = os.environ.get("HUGGING_FACE_HUB_TOKEN")
 
 
58
 
59
  >>> pipe = pipeline(
60
  >>> "text-generation",
61
  >>> model="d-matrix/distilgpt2",
 
62
  >>> use_auth_token=my_hf_token,
63
+ >>> trust_remote_code=True,
64
+ >>> # device_map="auto", # use this line for enabling pipeline parallel
65
+ >>> )
66
+ >>> pipe.model = dmx.Model(
67
+ >>> pipe.model, monkey_patched=False, hf=True, input_names=["input_ids", "labels"]
68
  >>> )
 
69
 
70
+ >>> pipe.model.transform("FALLBACK.yaml")
 
71
 
 
72
  >>> perplexity = evaluate.load("d-matrix/dmx_perplexity", module_type="metric")
73
  >>> input_texts = load_dataset("ptb_text_only", "penn_treebank", split="test")["sentence"]
74
+ >>> results = perplexity.compute(model=pipe.model.body, references=input_texts)
 
75
  >>> print(results)
76
  {'loss': 4.164604187011719, 'perplexity': 64.36720275878906}
77
  ```