|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch GPT-J model.""" |
|
|
|
import warnings |
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.fx |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPast, |
|
CausalLMOutputWithPast, |
|
QuestionAnsweringModelOutput, |
|
SequenceClassifierOutputWithPast, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ( |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
is_torch_fx_proxy, |
|
logging, |
|
) |
|
from .configuration_gptj import GPTJConfig |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "hf-internal-testing/tiny-random-gptj" |
|
_REAL_CHECKPOINT_FOR_DOC = "EleutherAI/gpt-j-6B" |
|
_CONFIG_FOR_DOC = "GPTJConfig" |
|
|
|
|
|
GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"EleutherAI/gpt-j-6B", |
|
|
|
] |
|
|
|
def create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor: |
|
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64) / dim)) |
|
sinusoid_inp = torch.einsum( |
|
"i , j -> i j", torch.arange(num_pos, dtype=torch.int64).float(), inv_freq |
|
).float() |
|
return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1) |
|
|
|
|
|
@torch.fx.wrap |
|
def get_embed_positions(embed_positions, position_ids): |
|
return embed_positions.to(position_ids.device).repeat(position_ids.shape[0], 1, 1) |
|
|
|
|
|
def rotate_every_two(x: torch.Tensor) -> torch.Tensor: |
|
x1 = x[:, :, :, ::2] |
|
x2 = x[:, :, :, 1::2] |
|
x = torch.stack((-x2, x1), dim=-1) |
|
return x.flatten(-2) |
|
|
|
|
|
def apply_rotary_pos_emb( |
|
tensor: torch.Tensor, sin: torch.Tensor, cos: torch.Tensor |
|
) -> torch.Tensor: |
|
sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3).to(tensor.device) |
|
cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3).to(tensor.device) |
|
return (tensor * cos) + (rotate_every_two(tensor) * sin) |
|
|
|
|
|
class GPTJAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
|
|
max_positions = config.max_position_embeddings |
|
self.register_buffer( |
|
"bias", |
|
torch.tril( |
|
torch.ones((max_positions, max_positions), dtype=torch.bool) |
|
).view(1, 1, max_positions, max_positions), |
|
persistent=False, |
|
) |
|
self.register_buffer("masked_bias", torch.tensor(-1e9), persistent=False) |
|
|
|
self.attn_dropout = nn.Dropout(config.attn_pdrop) |
|
self.resid_dropout = nn.Dropout(config.resid_pdrop) |
|
|
|
self.embed_dim = config.hidden_size |
|
self.num_attention_heads = config.num_attention_heads |
|
self.head_dim = self.embed_dim // self.num_attention_heads |
|
if self.head_dim * self.num_attention_heads != self.embed_dim: |
|
raise ValueError( |
|
f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and" |
|
f" `num_attention_heads`: {self.num_attention_heads})." |
|
) |
|
self.scale_attn = torch.sqrt( |
|
torch.tensor(self.head_dim, dtype=torch.float32) |
|
).to(torch.get_default_dtype()) |
|
|
|
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) |
|
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) |
|
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) |
|
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) |
|
self.rotary_dim = config.rotary_dim |
|
pos_embd_dim = self.rotary_dim or self.embed_dim |
|
self.embed_positions = create_sinusoidal_positions(max_positions, pos_embd_dim) |
|
|
|
def _split_heads(self, tensor, num_attention_heads, attn_head_size, rotary): |
|
""" |
|
Splits hidden dim into attn_head_size and num_attention_heads |
|
""" |
|
new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size) |
|
tensor = tensor.view(new_shape) |
|
if rotary: |
|
return tensor |
|
if len(tensor.shape) == 5: |
|
return tensor.permute( |
|
0, 1, 3, 2, 4 |
|
) |
|
elif len(tensor.shape) == 4: |
|
return tensor.permute( |
|
0, 2, 1, 3 |
|
) |
|
else: |
|
raise ValueError( |
|
f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}" |
|
) |
|
|
|
def _merge_heads(self, tensor, num_attention_heads, attn_head_size): |
|
""" |
|
Merges attn_head_size dim and num_attn_heads dim into hidden dim |
|
""" |
|
if len(tensor.shape) == 5: |
|
tensor = tensor.permute(0, 1, 3, 2, 4).contiguous() |
|
elif len(tensor.shape) == 4: |
|
tensor = tensor.permute(0, 2, 1, 3).contiguous() |
|
else: |
|
raise ValueError( |
|
f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}" |
|
) |
|
new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,) |
|
return tensor.view(new_shape) |
|
|
|
def _attn( |
|
self, |
|
query, |
|
key, |
|
value, |
|
attention_mask=None, |
|
head_mask=None, |
|
): |
|
|
|
query_length, key_length = query.size(-2), key.size(-2) |
|
causal_mask = self.bias[ |
|
:, :, key_length - query_length : key_length, :key_length |
|
] |
|
|
|
|
|
query = query.to(torch.float32) |
|
key = key.to(torch.float32) |
|
|
|
attn_weights = torch.matmul(query, key.transpose(-1, -2)) |
|
|
|
mask_value = torch.finfo(attn_weights.dtype).min |
|
|
|
|
|
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to( |
|
attn_weights.device |
|
) |
|
attn_weights = torch.where( |
|
causal_mask.to(attn_weights.device), attn_weights, mask_value |
|
) |
|
|
|
attn_weights = attn_weights / self.scale_attn |
|
|
|
if attention_mask is not None: |
|
|
|
attn_weights = attn_weights + attention_mask |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1) |
|
attn_weights = attn_weights.to(value.dtype) |
|
attn_weights = self.attn_dropout(attn_weights) |
|
|
|
|
|
if head_mask is not None: |
|
attn_weights = attn_weights * head_mask |
|
|
|
attn_output = torch.matmul(attn_weights, value) |
|
|
|
return attn_output, attn_weights |
|
|
|
def _get_embed_positions(self, position_ids): |
|
embed_positions = self.embed_positions |
|
if embed_positions.device != position_ids.device: |
|
embed_positions = embed_positions.to(position_ids.device) |
|
self.embed_positions = embed_positions |
|
return embed_positions.repeat(position_ids.shape[0], 1, 1) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
layer_past: Optional[Tuple[torch.Tensor]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = False, |
|
output_attentions: Optional[bool] = False, |
|
) -> Union[ |
|
Tuple[torch.Tensor, Tuple[torch.Tensor]], |
|
Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]], |
|
]: |
|
query = self.q_proj(hidden_states) |
|
key = self.k_proj(hidden_states) |
|
value = self.v_proj(hidden_states) |
|
|
|
query = self._split_heads(query, self.num_attention_heads, self.head_dim, True) |
|
key = self._split_heads(key, self.num_attention_heads, self.head_dim, True) |
|
value = self._split_heads(value, self.num_attention_heads, self.head_dim, False) |
|
|
|
if is_torch_fx_proxy(position_ids) or torch.jit.is_tracing(): |
|
|
|
|
|
embed_positions = get_embed_positions(self.embed_positions, position_ids) |
|
else: |
|
embed_positions = self._get_embed_positions(position_ids) |
|
|
|
repeated_position_ids = position_ids.unsqueeze(-1).repeat( |
|
1, 1, embed_positions.shape[-1] |
|
) |
|
sincos = torch.gather(embed_positions, 1, repeated_position_ids) |
|
sin, cos = torch.split(sincos, sincos.shape[-1] // 2, dim=-1) |
|
|
|
if self.rotary_dim is not None: |
|
k_rot = key[:, :, :, : self.rotary_dim] |
|
k_pass = key[:, :, :, self.rotary_dim :] |
|
|
|
q_rot = query[:, :, :, : self.rotary_dim] |
|
q_pass = query[:, :, :, self.rotary_dim :] |
|
|
|
k_rot = apply_rotary_pos_emb(k_rot, sin, cos) |
|
q_rot = apply_rotary_pos_emb(q_rot, sin, cos) |
|
|
|
key = torch.cat([k_rot, k_pass], dim=-1) |
|
query = torch.cat([q_rot, q_pass], dim=-1) |
|
else: |
|
key = apply_rotary_pos_emb(key, sin, cos) |
|
query = apply_rotary_pos_emb(query, sin, cos) |
|
|
|
key = key.permute(0, 2, 1, 3) |
|
query = query.permute(0, 2, 1, 3) |
|
|
|
if layer_past is not None: |
|
past_key = layer_past[0] |
|
past_value = layer_past[1] |
|
key = torch.cat((past_key, key), dim=-2) |
|
value = torch.cat((past_value, value), dim=-2) |
|
|
|
if use_cache is True: |
|
|
|
|
|
present = (key.to(hidden_states.dtype), value) |
|
else: |
|
present = None |
|
|
|
|
|
attn_output, attn_weights = self._attn( |
|
query, key, value, attention_mask, head_mask |
|
) |
|
|
|
attn_output = self._merge_heads( |
|
attn_output, self.num_attention_heads, self.head_dim |
|
) |
|
attn_output = self.out_proj(attn_output) |
|
attn_output = self.resid_dropout(attn_output) |
|
|
|
outputs = (attn_output, present) |
|
if output_attentions: |
|
outputs += (attn_weights,) |
|
|
|
return outputs |
|
|
|
|
|
class GPTJMLP(nn.Module): |
|
def __init__( |
|
self, intermediate_size, config |
|
): |
|
super().__init__() |
|
embed_dim = config.n_embd |
|
|
|
self.fc_in = nn.Linear(embed_dim, intermediate_size) |
|
self.fc_out = nn.Linear(intermediate_size, embed_dim) |
|
|
|
self.act = ACT2FN[config.activation_function] |
|
self.dropout = nn.Dropout(config.resid_pdrop) |
|
|
|
def forward(self, hidden_states: Optional[torch.FloatTensor]) -> torch.FloatTensor: |
|
hidden_states = self.fc_in(hidden_states) |
|
hidden_states = self.act(hidden_states) |
|
hidden_states = self.fc_out(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class GPTJBlock(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd |
|
self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) |
|
self.attn = GPTJAttention(config) |
|
self.mlp = GPTJMLP(inner_dim, config) |
|
|
|
def forward( |
|
self, |
|
hidden_states: Optional[torch.FloatTensor], |
|
layer_past: Optional[Tuple[torch.Tensor]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = False, |
|
output_attentions: Optional[bool] = False, |
|
) -> Union[ |
|
Tuple[torch.Tensor], |
|
Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]], |
|
]: |
|
residual = hidden_states |
|
hidden_states = self.ln_1(hidden_states) |
|
attn_outputs = self.attn( |
|
hidden_states=hidden_states, |
|
layer_past=layer_past, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
attn_output = attn_outputs[0] |
|
outputs = attn_outputs[1:] |
|
|
|
feed_forward_hidden_states = self.mlp(hidden_states) |
|
hidden_states = ( |
|
attn_output.to(feed_forward_hidden_states.device) |
|
+ feed_forward_hidden_states |
|
+ residual.to(feed_forward_hidden_states.device) |
|
) |
|
|
|
if use_cache: |
|
outputs = (hidden_states,) + outputs |
|
else: |
|
outputs = (hidden_states,) + outputs[1:] |
|
|
|
return outputs |
|
|
|
|
|
class GPTJPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = GPTJConfig |
|
base_model_prefix = "transformer" |
|
is_parallelizable = True |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["GPTJBlock"] |
|
_skip_keys_device_placement = "past_key_values" |
|
|
|
def __init__(self, *inputs, **kwargs): |
|
super().__init__(*inputs, **kwargs) |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights.""" |
|
if isinstance(module, (nn.Linear,)): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
|
|
GPTJ_START_DOCSTRING = r""" |
|
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use |
|
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and |
|
behavior. |
|
|
|
Parameters: |
|
config ([`GPTJConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
GPTJ_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `({0})`): |
|
Indices of input sequence tokens in the vocabulary. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): |
|
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, |
|
1]`: |
|
|
|
- 0 corresponds to a *sentence A* token, |
|
- 1 corresponds to a *sentence B* token. |
|
|
|
[What are token type IDs?](../glossary#token-type-ids) |
|
position_ids (`torch.LongTensor` of shape `({0})`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
head_mask (`torch.FloatTensor` of shape `(num_attention_heads,)` or `(n_layer, num_attention_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_dim)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare GPT-J Model transformer outputting raw hidden-states without any specific head on top.", |
|
GPTJ_START_DOCSTRING, |
|
) |
|
class GPTJModel(GPTJPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.embed_dim = config.n_embd |
|
self.vocab_size = config.vocab_size |
|
self.wte = nn.Embedding(config.vocab_size, self.embed_dim) |
|
self.drop = nn.Dropout(config.embd_pdrop) |
|
self.h = nn.ModuleList([GPTJBlock(config) for _ in range(config.n_layer)]) |
|
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.wte |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.wte = new_embeddings |
|
|
|
@add_start_docstrings_to_model_forward( |
|
GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length") |
|
) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=BaseModelOutputWithPast, |
|
config_class=_CONFIG_FOR_DOC, |
|
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = ( |
|
output_attentions |
|
if output_attentions is not None |
|
else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError( |
|
"You cannot specify both input_ids and inputs_embeds at the same time" |
|
) |
|
elif input_ids is not None: |
|
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) |
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
batch_size = input_ids.shape[0] |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
batch_size = inputs_embeds.shape[0] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
|
if token_type_ids is not None: |
|
token_type_ids = token_type_ids.view(-1, input_shape[-1]) |
|
|
|
if past_key_values is None: |
|
past_length = 0 |
|
past_key_values = tuple([None] * len(self.h)) |
|
else: |
|
past_length = past_key_values[0][0].size(-2) |
|
|
|
if position_ids is None: |
|
position_ids = torch.arange( |
|
past_length, |
|
input_shape[-1] + past_length, |
|
dtype=torch.long, |
|
device=device, |
|
) |
|
position_ids = position_ids.unsqueeze(0) |
|
|
|
|
|
if attention_mask is not None: |
|
if batch_size <= 0: |
|
raise ValueError("batch_size has to be defined and > 0") |
|
attention_mask = attention_mask.view(batch_size, -1) |
|
|
|
|
|
|
|
|
|
|
|
attention_mask = attention_mask[:, None, None, :] |
|
|
|
|
|
|
|
|
|
|
|
|
|
attention_mask = attention_mask.to(dtype=self.dtype) |
|
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min |
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.n_layer) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.wte(input_ids) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
if token_type_ids is not None: |
|
token_type_embeds = self.wte(token_type_ids) |
|
hidden_states = hidden_states + token_type_embeds |
|
|
|
hidden_states = self.drop(hidden_states) |
|
|
|
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
presents = () if use_cache else None |
|
all_self_attentions = () if output_attentions else None |
|
all_hidden_states = () if output_hidden_states else None |
|
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): |
|
|
|
if layer_past is not None: |
|
layer_past = tuple( |
|
past_state.to(hidden_states.device) for past_state in layer_past |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attention_mask.to(hidden_states.device) |
|
if isinstance(head_mask, torch.Tensor): |
|
head_mask = head_mask.to(hidden_states.device) |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
outputs = self._gradient_checkpointing_func( |
|
block.__call__, |
|
hidden_states, |
|
None, |
|
attention_mask, |
|
position_ids, |
|
head_mask[i], |
|
use_cache, |
|
output_attentions, |
|
) |
|
else: |
|
outputs = block( |
|
hidden_states=hidden_states, |
|
layer_past=layer_past, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask[i], |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
if use_cache is True: |
|
presents = presents + (outputs[1],) |
|
|
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + ( |
|
outputs[2 if use_cache else 1], |
|
) |
|
|
|
hidden_states = self.ln_f(hidden_states) |
|
|
|
hidden_states = hidden_states.view(output_shape) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
presents, |
|
all_hidden_states, |
|
all_self_attentions, |
|
] |
|
if v is not None |
|
) |
|
|
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=presents, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The GPT-J Model transformer with a language modeling head on top. |
|
""", |
|
GPTJ_START_DOCSTRING, |
|
) |
|
class GPTJForCausalLM(GPTJPreTrainedModel): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.transformer = GPTJModel(config) |
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs |
|
): |
|
token_type_ids = kwargs.get("token_type_ids", None) |
|
|
|
if past_key_values: |
|
past_length = past_key_values[0][0].shape[2] |
|
|
|
|
|
if input_ids.shape[1] > past_length: |
|
remove_prefix_length = past_length |
|
else: |
|
|
|
remove_prefix_length = input_ids.shape[1] - 1 |
|
|
|
input_ids = input_ids[:, remove_prefix_length:] |
|
if token_type_ids is not None: |
|
token_type_ids = token_type_ids[:, -input_ids.shape[1] :] |
|
|
|
attention_mask = kwargs.get("attention_mask", None) |
|
position_ids = kwargs.get("position_ids", None) |
|
|
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -input_ids.shape[1] :] |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"position_ids": position_ids, |
|
"attention_mask": attention_mask, |
|
"token_type_ids": token_type_ids, |
|
} |
|
) |
|
|
|
return model_inputs |
|
|
|
@add_start_docstrings_to_model_forward( |
|
GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length") |
|
) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=CausalLMOutputWithPast, |
|
config_class=_CONFIG_FOR_DOC, |
|
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set |
|
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` |
|
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` |
|
""" |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = transformer_outputs[0] |
|
|
|
|
|
hidden_states = hidden_states.to(self.lm_head.weight.device) |
|
|
|
|
|
|
|
|
|
lm_logits = self.lm_head(hidden_states).to(torch.float32) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
labels = labels.to(lm_logits.device) |
|
|
|
shift_logits = lm_logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct( |
|
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1) |
|
) |
|
|
|
loss = loss.to(hidden_states.dtype) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
@staticmethod |
|
def _reorder_cache( |
|
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor |
|
) -> Tuple[Tuple[torch.Tensor]]: |
|
""" |
|
This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or |
|
[`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct |
|
beam_idx at every generation step. |
|
""" |
|
return tuple( |
|
tuple( |
|
past_state.index_select(0, beam_idx.to(past_state.device)) |
|
for past_state in layer_past |
|
) |
|
for layer_past in past_key_values |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The GPT-J Model transformer with a sequence classification head on top (linear layer). |
|
|
|
[`GPTJForSequenceClassification`] uses the last token in order to do the classification, as other causal models |
|
(e.g. GPT, GPT-2, GPT-Neo) do. |
|
|
|
Since it does classification on the last token, it requires to know the position of the last token. If a |
|
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If |
|
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the |
|
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in |
|
each row of the batch). |
|
""", |
|
GPTJ_START_DOCSTRING, |
|
) |
|
class GPTJForSequenceClassification(GPTJPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.transformer = GPTJModel(config) |
|
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward( |
|
GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length") |
|
) |
|
@add_code_sample_docstrings( |
|
checkpoint="ydshieh/tiny-random-gptj-for-sequence-classification", |
|
output_type=SequenceClassifierOutputWithPast, |
|
config_class=_CONFIG_FOR_DOC, |
|
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, SequenceClassifierOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = transformer_outputs[0] |
|
logits = self.score(hidden_states) |
|
|
|
if input_ids is not None: |
|
batch_size = input_ids.shape[0] |
|
else: |
|
batch_size = inputs_embeds.shape[0] |
|
|
|
if self.config.pad_token_id is None and batch_size != 1: |
|
raise ValueError( |
|
"Cannot handle batch sizes > 1 if no padding token is defined." |
|
) |
|
if self.config.pad_token_id is None: |
|
sequence_lengths = -1 |
|
else: |
|
if input_ids is not None: |
|
|
|
sequence_lengths = ( |
|
torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 |
|
) |
|
sequence_lengths = sequence_lengths % input_ids.shape[-1] |
|
sequence_lengths = sequence_lengths.to(logits.device) |
|
else: |
|
sequence_lengths = -1 |
|
logger.warning( |
|
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " |
|
"unexpected if using padding tokens in conjunction with `inputs_embeds.`" |
|
) |
|
|
|
pooled_logits = logits[ |
|
torch.arange(batch_size, device=logits.device), sequence_lengths |
|
] |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(pooled_logits.device) |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and ( |
|
labels.dtype == torch.long or labels.dtype == torch.int |
|
): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(pooled_logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct( |
|
pooled_logits.view(-1, self.num_labels), labels.view(-1) |
|
) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(pooled_logits, labels) |
|
if not return_dict: |
|
output = (pooled_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutputWithPast( |
|
loss=loss, |
|
logits=pooled_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The GPT-J Model transformer with a span classification head on top for extractive question-answering tasks like |
|
SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). |
|
""", |
|
GPTJ_START_DOCSTRING, |
|
) |
|
class GPTJForQuestionAnswering(GPTJPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.transformer = GPTJModel(config) |
|
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward( |
|
GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length") |
|
) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=QuestionAnsweringModelOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
start_positions: Optional[torch.LongTensor] = None, |
|
end_positions: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, QuestionAnsweringModelOutput]: |
|
r""" |
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the start of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the end of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
""" |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
outputs = self.transformer( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
logits = self.qa_outputs(sequence_output) |
|
start_logits, end_logits = logits.split(1, dim=-1) |
|
start_logits = start_logits.squeeze(-1).contiguous() |
|
end_logits = end_logits.squeeze(-1).contiguous() |
|
|
|
total_loss = None |
|
if start_positions is not None and end_positions is not None: |
|
|
|
if len(start_positions.size()) > 1: |
|
start_positions = start_positions.squeeze(-1).to(start_logits.device) |
|
if len(end_positions.size()) > 1: |
|
end_positions = end_positions.squeeze(-1).to(end_logits.device) |
|
|
|
ignored_index = start_logits.size(1) |
|
start_positions = start_positions.clamp(0, ignored_index) |
|
end_positions = end_positions.clamp(0, ignored_index) |
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) |
|
start_loss = loss_fct(start_logits, start_positions) |
|
end_loss = loss_fct(end_logits, end_positions) |
|
total_loss = (start_loss + end_loss) / 2 |
|
|
|
if not return_dict: |
|
output = (start_logits, end_logits) + outputs[2:] |
|
return ((total_loss,) + output) if total_loss is not None else output |
|
|
|
return QuestionAnsweringModelOutput( |
|
loss=total_loss, |
|
start_logits=start_logits, |
|
end_logits=end_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|