Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
model-index:
|
3 |
+
- name: CodeLlama-7b
|
4 |
+
results:
|
5 |
+
- task:
|
6 |
+
type: code-generation
|
7 |
+
dataset:
|
8 |
+
name: Humaneval
|
9 |
+
type: humaneval
|
10 |
+
metrics:
|
11 |
+
- type: pass@1 (BASELINE)
|
12 |
+
value: 0.3048780487804878
|
13 |
+
- type: pass@1 (BASIC)
|
14 |
+
value: 0.3170731707317073
|
15 |
+
---
|
16 |
+
This is a d-Matrix functional reference of the CODELLAMA-7B model.
|
17 |
+
The reference provides the following functional *configurations*:
|
18 |
+
Configuration | Explanation
|
19 |
+
:-- | :--
|
20 |
+
**`BASELINE`** | a reference functionally equivalent to the original model
|
21 |
+
**`BASIC`** | all linear algebraic operands quantized to `BFP16-64`, and all other operations transformed to approximated kernel simulations
|
22 |
+
|
23 |
+
|
24 |
+
### Usage
|
25 |
+
|
26 |
+
Install d-Matrix [Dmx_Compressor](https://github.com/d-matrix-ai/dmx-compressor) first.
|
27 |
+
```sh
|
28 |
+
pip install dmx_compressor
|
29 |
+
```
|
30 |
+
|
31 |
+
The following is an example model and its evaluation.
|
32 |
+
|
33 |
+
```sh
|
34 |
+
git clone https://github.com/bigcode-project/bigcode-evaluation-harness.git
|
35 |
+
cd bigcode-evaluation-harness
|
36 |
+
pip install .
|
37 |
+
```
|
38 |
+
|
39 |
+
```python
|
40 |
+
from dmx.compressor.modeling import DmxModel
|
41 |
+
from bigcode_eval.evaluator import Evaluator
|
42 |
+
|
43 |
+
pipe = pipeline(
|
44 |
+
task="text-generation",
|
45 |
+
model="d-matrix/CodeLlama-7b",
|
46 |
+
trust_remote_code=True,
|
47 |
+
)
|
48 |
+
|
49 |
+
# Transform the model with DMX
|
50 |
+
model = DmxModel.from_torch(pipe.model).to_basic_model() # Using BASIC configuration
|
51 |
+
model(torch.randint(1, 100, (1, max_length))) # Assign desired max length of generation
|
52 |
+
|
53 |
+
evaluator = Evaluator(accelerator, model, tokenizer, eval_args)
|
54 |
+
|
55 |
+
eval_results = evaluator.evaluate(task) # Assign desired task, i.e. "humaneval"
|
56 |
+
```
|