cys commited on
Commit
03ffff7
1 Parent(s): edf726e

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaPickAndPlace-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaPickAndPlace-v3
16
+ type: PandaPickAndPlace-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -50.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaPickAndPlace-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaPickAndPlace-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:310b0a384769612aebc014e1aea2b13c054713eb95e112de8f6357355a173e85
3
+ size 123168
a2c-PandaPickAndPlace-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaPickAndPlace-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f976e5f57e0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f976e5fc940>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1697265569664698905,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAbpzZPk7Dpr4N5AQ+nIGMvvXNhL8y4wQ+GTQkv/hvMj8N5AQ+yva7vz07rz+J3QQ+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbxvNvyK6Qz7iK4g/XDt8Pxp3kT8Mc1c/fzioP+VH3b8LyMO+ctDOP3QJsz5jP0Q/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADhAgg/H3csPwE4Rr+I1Qu/vZiGvse90r/RycY/bpzZPk7Dpr4N5AQ+6zP3uz06gDw3FPS8t8uIPVmS7DswQoI9U9oIui1uPbweI4S63ivVv8Jw1j7Zx0u/tcebwBKEmz+g7fe+SgEBv5yBjL71zYS/MuMEPum587szX4A8AmfmvC8LiT0aat07RkKCPYS/CLohcD28LOBhur2NeL8JQr++n9qoPk2haMBLZZm/8VZpP13jSb8ZNCS/+G8yPw3kBD7aM/e7TzqAPI6D8Lyzy4g9xZHsOzZCgj2W0Ai6fG49vConhLolGOe9PUzKvkgroL5Mo4G+z3RCv263jT8/UEe/yva7vz07rz+J3QQ+QmL5u+yGgDxWbn++HrCFvfG0rT6mKIM9C9apOhYVPrxhVXG9lGgOSwRLE4aUaBJ0lFKUdS4=",
33
+ "achieved_goal": "[[ 0.4250216 -0.3257088 0.1297762 ]\n [-0.27442634 -1.0375353 0.12977293]\n [-0.64141995 0.697021 0.1297762 ]\n [-1.4684689 1.3689953 0.12975134]]",
34
+ "desired_goal": "[[-1.6023997 0.19113973 1.0638392 ]\n [ 0.98528075 1.1364472 0.8415992 ]\n [ 1.3142241 -1.7287565 -0.38238558]\n [ 1.6157362 0.3496815 0.7665922 ]]",
35
+ "observation": "[[ 5.31293929e-01 6.73692644e-01 -7.74292052e-01 -5.46226978e-01\n -2.62884051e-01 -1.64641654e+00 1.55303395e+00 4.25021589e-01\n -3.25708807e-01 1.29776195e-01 -7.54403090e-03 1.56527702e-02\n -2.97947954e-02 6.67948052e-02 7.21959444e-03 6.36028051e-02\n -5.22052113e-04 -1.15619125e-02 -1.00812665e-03]\n [-1.66540122e+00 4.18829024e-01 -7.96018183e-01 -4.86812830e+00\n 1.21496797e+00 -4.84234810e-01 -5.03925920e-01 -2.74426341e-01\n -1.03753531e+00 1.29772931e-01 -7.43793370e-03 1.56703945e-02\n -2.81252898e-02 6.69158623e-02 6.75703306e-03 6.36029691e-02\n -5.21652633e-04 -1.15623781e-02 -8.61647306e-04]\n [-9.70912755e-01 -3.73550683e-01 3.29792947e-01 -3.63484502e+00\n -1.19840372e+00 9.11482871e-01 -7.88625538e-01 -6.41419947e-01\n 6.97021008e-01 1.29776195e-01 -7.54402298e-03 1.56528037e-02\n -2.93596052e-02 6.67947754e-02 7.21952552e-03 6.36028498e-02\n -5.21907001e-04 -1.15619861e-02 -1.00824726e-03]\n [-1.12839021e-01 -3.95112902e-01 -3.12830210e-01 -2.53198981e-01\n -7.59594858e-01 1.10716033e+00 -7.78568208e-01 -1.46846890e+00\n 1.36899531e+00 1.29751340e-01 -7.61059020e-03 1.56893358e-02\n -2.49444336e-01 -6.52773231e-02 3.39271098e-01 6.40423745e-02\n 1.29574665e-03 -1.16017070e-02 -5.89193143e-02]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA18mWPben3LwK16M8ouECPhuQM7wK16M8I8UAvmAdWD0K16M8utT9vP5XiL0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAgDnHPeLdIT0P+rs9Lg2PO34H+D0Sfg89AOKdvaHkvj2gwyw9Fxe3vQln9r10fy4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA18mWPben3LwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAKLhAj4bkDO8CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAAjxQC+YB1YPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAutT9vP5XiL0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
44
+ "achieved_goal": "[[ 0.07362717 -0.02693544 0.02 ]\n [ 0.12781385 -0.01095965 0.02 ]\n [-0.12575202 0.05276239 0.02 ]\n [-0.03098522 -0.06657408 0.02 ]]",
45
+ "desired_goal": "[[ 0.09727764 0.03951824 0.09178554]\n [ 0.00436558 0.12110804 0.03503234]\n [-0.07709122 0.09320951 0.04217875]\n [-0.08939951 -0.12031371 0.17040807]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 7.3627166e-02\n -2.6935441e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.2781385e-01\n -1.0959650e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.2575202e-01\n 5.2762389e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -3.0985225e-02\n -6.6574082e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CoUuwbuMMrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoUzFHrhR7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoU0dVWCEpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoUwP69CeFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoU+0Gmk30dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoVDi/O+qSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoVE4W1twadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoVAsvAXVLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoVPOOsDGMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoVT15rxiHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoVVQEQoTgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoVRDYqXnhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoVfzIV/MGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoVlEQGwA3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoVnSimEXddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoVjJP69CedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoVyOEVWS2dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CoVytI065odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoV5aJIlMRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoV7wJokAxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoV3jjzZpSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoWHH93r2QdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoWL0vwmVrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoWNSEcsDodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoWJF0gbIcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoWZCzkZJkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoWjz0g8r7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoWodGy5ZsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoWkSjHn2adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoW1gQQL/kdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoW+AlOXVtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoXCczhxYJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoW+SHdoFndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoXPe/Ho5hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoXYl67dzodX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CoXZF9roGIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoXdF3yI56dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoXY/W+XZ5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoXqtW+49YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoX1fQ8fV7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoX3vKU3XJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoXziSRr8BdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoYCnCXQdCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoYIKlgtvodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoYJx6nivQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoYFlCkXUIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoYUkWykbhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoYY9mYjSodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoYaGdRR/FdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoYV5flZHNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoYkvKuB+XdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoYpkLYwqRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoYqqFh5PedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoYmebExZddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoY1x7Z39rdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoY6R6nivQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoY7dugpSadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoY3QvYe1bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZGNrbg0kdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZLXeN1hcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZMyhakhzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZImEoOQRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZXdhiLEUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZdwgDA8CdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZgCcG1QZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZb3IuGsWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZrbyQPqcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZxLIo3JgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZyTposZpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZuGbCrLhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZ9PnjhkzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoaCUcwQDndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoaEI3irDJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZ//ixVyWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoaPE61b7kdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoaTnMMZxadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoaUpE6T4ddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoaQdFF2FGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoafjiwSrYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoakUOmR/3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoamBwVCXydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coah4+KTB7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoaxRnezlcdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Coaxmnfl6rdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coa2Cf6Gg0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coa3eOn2qUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoazRzq8lHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CobCzIV/MGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CobH98Rcu8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CobJSj59E1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CobFFWfbsXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CobUTshPj5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CobZOnMt9QdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coba4jSofkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CobWsQVbiZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CobmQDmr80dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CobrcKohpydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CobtAgHNX6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CobozxwyZbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cob4prtVrAdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True True]",
82
+ "bounded_above": "[ True True True True]",
83
+ "_shape": [
84
+ 4
85
+ ],
86
+ "low": "[-1. -1. -1. -1.]",
87
+ "high": "[1. 1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaPickAndPlace-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd3fe1bed5a59e49c9a009198ba4e581a29ce8d95efe315812c8601805852bd5
3
+ size 51646
a2c-PandaPickAndPlace-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48d9f212f1efcfd13925b981c0a7454e8393a0cbf9c4c8fbd58fd7d0dbf7b2de
3
+ size 52926
a2c-PandaPickAndPlace-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaPickAndPlace-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f976e5f57e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f976e5fc940>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1697265569664698905, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAbpzZPk7Dpr4N5AQ+nIGMvvXNhL8y4wQ+GTQkv/hvMj8N5AQ+yva7vz07rz+J3QQ+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbxvNvyK6Qz7iK4g/XDt8Pxp3kT8Mc1c/fzioP+VH3b8LyMO+ctDOP3QJsz5jP0Q/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADhAgg/H3csPwE4Rr+I1Qu/vZiGvse90r/RycY/bpzZPk7Dpr4N5AQ+6zP3uz06gDw3FPS8t8uIPVmS7DswQoI9U9oIui1uPbweI4S63ivVv8Jw1j7Zx0u/tcebwBKEmz+g7fe+SgEBv5yBjL71zYS/MuMEPum587szX4A8AmfmvC8LiT0aat07RkKCPYS/CLohcD28LOBhur2NeL8JQr++n9qoPk2haMBLZZm/8VZpP13jSb8ZNCS/+G8yPw3kBD7aM/e7TzqAPI6D8Lyzy4g9xZHsOzZCgj2W0Ai6fG49vConhLolGOe9PUzKvkgroL5Mo4G+z3RCv263jT8/UEe/yva7vz07rz+J3QQ+QmL5u+yGgDxWbn++HrCFvfG0rT6mKIM9C9apOhYVPrxhVXG9lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.4250216 -0.3257088 0.1297762 ]\n [-0.27442634 -1.0375353 0.12977293]\n [-0.64141995 0.697021 0.1297762 ]\n [-1.4684689 1.3689953 0.12975134]]", "desired_goal": "[[-1.6023997 0.19113973 1.0638392 ]\n [ 0.98528075 1.1364472 0.8415992 ]\n [ 1.3142241 -1.7287565 -0.38238558]\n [ 1.6157362 0.3496815 0.7665922 ]]", "observation": "[[ 5.31293929e-01 6.73692644e-01 -7.74292052e-01 -5.46226978e-01\n -2.62884051e-01 -1.64641654e+00 1.55303395e+00 4.25021589e-01\n -3.25708807e-01 1.29776195e-01 -7.54403090e-03 1.56527702e-02\n -2.97947954e-02 6.67948052e-02 7.21959444e-03 6.36028051e-02\n -5.22052113e-04 -1.15619125e-02 -1.00812665e-03]\n [-1.66540122e+00 4.18829024e-01 -7.96018183e-01 -4.86812830e+00\n 1.21496797e+00 -4.84234810e-01 -5.03925920e-01 -2.74426341e-01\n -1.03753531e+00 1.29772931e-01 -7.43793370e-03 1.56703945e-02\n -2.81252898e-02 6.69158623e-02 6.75703306e-03 6.36029691e-02\n -5.21652633e-04 -1.15623781e-02 -8.61647306e-04]\n [-9.70912755e-01 -3.73550683e-01 3.29792947e-01 -3.63484502e+00\n -1.19840372e+00 9.11482871e-01 -7.88625538e-01 -6.41419947e-01\n 6.97021008e-01 1.29776195e-01 -7.54402298e-03 1.56528037e-02\n -2.93596052e-02 6.67947754e-02 7.21952552e-03 6.36028498e-02\n -5.21907001e-04 -1.15619861e-02 -1.00824726e-03]\n [-1.12839021e-01 -3.95112902e-01 -3.12830210e-01 -2.53198981e-01\n -7.59594858e-01 1.10716033e+00 -7.78568208e-01 -1.46846890e+00\n 1.36899531e+00 1.29751340e-01 -7.61059020e-03 1.56893358e-02\n -2.49444336e-01 -6.52773231e-02 3.39271098e-01 6.40423745e-02\n 1.29574665e-03 -1.16017070e-02 -5.89193143e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA18mWPben3LwK16M8ouECPhuQM7wK16M8I8UAvmAdWD0K16M8utT9vP5XiL0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAgDnHPeLdIT0P+rs9Lg2PO34H+D0Sfg89AOKdvaHkvj2gwyw9Fxe3vQln9r10fy4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA18mWPben3LwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAKLhAj4bkDO8CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAAjxQC+YB1YPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAutT9vP5XiL0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.07362717 -0.02693544 0.02 ]\n [ 0.12781385 -0.01095965 0.02 ]\n [-0.12575202 0.05276239 0.02 ]\n [-0.03098522 -0.06657408 0.02 ]]", "desired_goal": "[[ 0.09727764 0.03951824 0.09178554]\n [ 0.00436558 0.12110804 0.03503234]\n [-0.07709122 0.09320951 0.04217875]\n [-0.08939951 -0.12031371 0.17040807]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 7.3627166e-02\n -2.6935441e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.2781385e-01\n -1.0959650e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.2575202e-01\n 5.2762389e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -3.0985225e-02\n -6.6574082e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CoUuwbuMMrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoUzFHrhR7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoU0dVWCEpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoUwP69CeFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoU+0Gmk30dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoVDi/O+qSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoVE4W1twadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoVAsvAXVLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoVPOOsDGMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoVT15rxiHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoVVQEQoTgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoVRDYqXnhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoVfzIV/MGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoVlEQGwA3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoVnSimEXddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoVjJP69CedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoVyOEVWS2dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CoVytI065odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoV5aJIlMRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoV7wJokAxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoV3jjzZpSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoWHH93r2QdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoWL0vwmVrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoWNSEcsDodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoWJF0gbIcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoWZCzkZJkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoWjz0g8r7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoWodGy5ZsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoWkSjHn2adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoW1gQQL/kdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoW+AlOXVtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoXCczhxYJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoW+SHdoFndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoXPe/Ho5hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoXYl67dzodX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CoXZF9roGIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoXdF3yI56dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoXY/W+XZ5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoXqtW+49YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoX1fQ8fV7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoX3vKU3XJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoXziSRr8BdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoYCnCXQdCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoYIKlgtvodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoYJx6nivQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoYFlCkXUIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoYUkWykbhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoYY9mYjSodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoYaGdRR/FdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoYV5flZHNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoYkvKuB+XdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoYpkLYwqRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoYqqFh5PedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoYmebExZddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoY1x7Z39rdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoY6R6nivQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoY7dugpSadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoY3QvYe1bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZGNrbg0kdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZLXeN1hcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZMyhakhzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZImEoOQRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZXdhiLEUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZdwgDA8CdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZgCcG1QZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZb3IuGsWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZrbyQPqcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZxLIo3JgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZyTposZpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZuGbCrLhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZ9PnjhkzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoaCUcwQDndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoaEI3irDJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZ//ixVyWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoaPE61b7kdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoaTnMMZxadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoaUpE6T4ddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoaQdFF2FGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoafjiwSrYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoakUOmR/3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoamBwVCXydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coah4+KTB7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoaxRnezlcdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Coaxmnfl6rdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coa2Cf6Gg0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coa3eOn2qUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoazRzq8lHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CobCzIV/MGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CobH98Rcu8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CobJSj59E1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CobFFWfbsXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CobUTshPj5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CobZOnMt9QdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coba4jSofkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CobWsQVbiZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CobmQDmr80dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CobrcKohpydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CobtAgHNX6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CobozxwyZbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cob4prtVrAdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (935 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-14T07:31:41.833209"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:363e53633a3d33435f73da05d7af6dd087fb2cb3384ba217c0e0d6f0252c23af
3
+ size 3013