File size: 6,825 Bytes
1ca500a
 
8c79a96
 
 
 
 
 
 
 
 
 
264d6a0
 
80d5cb0
2ee9cac
 
 
336fe06
 
 
 
 
 
 
 
2ee9cac
336fe06
2ee9cac
336fe06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ee9cac
336fe06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ee9cac
336fe06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ee9cac
336fe06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ee9cac
336fe06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ee9cac
336fe06
80d5cb0
336fe06
80d5cb0
1ca500a
5b2017f
1ca500a
 
5b2017f
1ca500a
8c79a96
 
 
 
5b2017f
1ca500a
 
 
 
5b2017f
1ca500a
8c79a96
1ca500a
8c79a96
1ca500a
8c79a96
1ca500a
8c79a96
1ca500a
 
8c79a96
 
1ca500a
8c79a96
 
 
 
 
 
1ca500a
8c79a96
1ca500a
8c79a96
 
 
 
 
 
 
1ca500a
8c79a96
1ca500a
8c79a96
1ca500a
 
8c79a96
 
 
1ca500a
8c79a96
 
 
 
 
 
1ca500a
 
 
 
 
 
8c79a96
1ca500a
 
 
8c79a96
1ca500a
8c79a96
1ca500a
 
 
 
8c79a96
1ca500a
8c79a96
1ca500a
8c79a96
1ca500a
8c79a96
1ca500a
8c79a96
1ca500a
8c79a96
1ca500a
8c79a96
1ca500a
8c79a96
1ca500a
8c79a96
1ca500a
 
 
8c79a96
1ca500a
 
 
8c79a96
 
2ee9cac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
---
library_name: transformers
tags:
- turkish
- general tasks
- RAG
- SFT
license: apache-2.0
language:
- tr
- en
pipeline_tag: text2text-generation
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: cymist-2-v02-SFT
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 60.07
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cypienai/cymist-2-v02-SFT
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 83.43
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cypienai/cymist-2-v02-SFT
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 52.06
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cypienai/cymist-2-v02-SFT
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 38.97
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cypienai/cymist-2-v02-SFT
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 78.61
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cypienai/cymist-2-v02-SFT
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 60.07
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cypienai/cymist-2-v02-SFT
      name: Open LLM Leaderboard
---
# Model Card for Cymist2-v0.2-SFT
### Model Description

Cymist2-v0.2 is a cutting-edge language model developed by the Cypien AI Team, optimized for text-generation tasks. The model leverages the transformers library and is available under the Apache-2.0 license.

- **Developed by:** Cypien AI Team
- **Model type:** Language Model for Text-Generation
- **Language(s) (NLP):** Turkish, English
- **License:** Apache-2.0
- **Finetuned from model**: mistralai/Mistral-7B-v0.1


### Direct Use

This model is designed for direct use in general applications requiring Turkish language understanding, RAG and text-generation capabilities. It can be integrated into chatbots, virtual assistants, and other AI systems where understanding and generating human-like responses are essential.

### Out-of-Scope Use

The model is not intended for use in critical systems where incorrect answers could lead to harm or in contexts that require domain-specific knowledge beyond the scope of general text-generation.

## Bias, Risks, and Limitations

The model, like all AI models, may inherit biases from its training data. Users should be aware of these potential biases and consider them when integrating the model into applications.


```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "cypienai/cymist2-v02-SFT"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token_id = tokenizer.eos_token_id
```
## Use Flash-Attention 2 to further speed-up generation

First make sure to install flash-attn. Refer to the original repository of Flash Attention regarding that package installation. Simply change the snippet above with:

```python
model = AutoModelForCausalLM.from_pretrained(
        model_name,
        torch_dtype=torch.bfloat16,
        attn_implementation="flash_attention_2"
        )
```

# Example usage

Here's the prompt template for this model:


```python
question="Yenilenebilir gıdalar nelerdir ?"
prompt= f"[INST] {question} [/INST]"

with torch.inference_mode():
  input_ids = tokenizer(prompt, return_tensors="pt").to(device)
  output = model.generate(**input_ids, max_new_tokens=8096)
  decoded_output = tokenizer.decode(output[0], skip_special_tokens=False)
  print(decoded_output)
``` 


## Training Details

### Training Data

The model was trained on a diverse set of Turkish & English language sources, encompassing a wide range of topics to ensure comprehensive language understanding.

### Training Procedure

#### Preprocessing

The training data underwent standard NLP preprocessing steps, including tokenization, normalization, and possibly data augmentation to enhance the model's robustness.


## Environmental Impact

The training of Cymist2-v0.1-SFT was conducted with a focus on minimizing carbon emissions. Detailed carbon emission statistics will be provided based on the Machine Learning Impact calculator, considering hardware type, usage hours, cloud provider, compute region, and total emissions.

0.93 kg of CO2eq

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

## Technical Specifications

More detailed technical specifications, including model architecture, compute infrastructure, hardware, and software, will be provided to offer insights into the model's operational context.

## Citation

When citing this model in your research, please refer to this model card for information about the model's development and capabilities.

## Glossary

A glossary section can be added to define specific terms and calculations related to the model, ensuring clarity for all potential users.

## More Information [optional]

For more information or inquiries about the model, please contact the Cypien AI Team.

## Model Card Contact

[email protected]

CypienAI team