cybrtooth commited on
Commit
147beb8
·
1 Parent(s): f688928

added readme

Browse files
Files changed (1) hide show
  1. README.md +359 -0
README.md ADDED
@@ -0,0 +1,359 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.2
3
+ inference: false
4
+ license: apache-2.0
5
+ model_creator: Mistral AI_
6
+ model_name: Mistral 7B Instruct v0.2
7
+ model_type: mistral
8
+ pipeline_tag: text-generation
9
+ prompt_template: '<s>[INST] {prompt} [/INST]
10
+ '
11
+ quantized_by: TheBloke
12
+ tags:
13
+ - finetuned
14
+ ---
15
+ <!-- markdownlint-disable MD041 -->
16
+
17
+ <!-- header start -->
18
+ <!-- 200823 -->
19
+ <div style="width: auto; margin-left: auto; margin-right: auto">
20
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
21
+ </div>
22
+ <div style="display: flex; justify-content: space-between; width: 100%;">
23
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
24
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
25
+ </div>
26
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
27
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
28
+ </div>
29
+ </div>
30
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
31
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
32
+ <!-- header end -->
33
+ # Mistral 7B Instruct v0.2 - AWQ
34
+ - Model creator: [Mistral AI_](https://huggingface.co/mistralai)
35
+ - Original model: [Mistral 7B Instruct v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
36
+
37
+ <!-- description start -->
38
+ ## Description
39
+
40
+ This repo contains AWQ model files for [Mistral AI_'s Mistral 7B Instruct v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2).
41
+
42
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
43
+
44
+
45
+ ### About AWQ
46
+
47
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
48
+
49
+ AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
50
+
51
+ It is supported by:
52
+
53
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
54
+ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
55
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
56
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
57
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
58
+
59
+ <!-- description end -->
60
+ <!-- repositories-available start -->
61
+ ## Repositories available
62
+
63
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-AWQ)
64
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GPTQ)
65
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF)
66
+ * [Mistral AI_'s original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
67
+ <!-- repositories-available end -->
68
+
69
+ <!-- prompt-template start -->
70
+ ## Prompt template: Mistral
71
+
72
+ ```
73
+ <s>[INST] {prompt} [/INST]
74
+ ```
75
+
76
+ <!-- prompt-template end -->
77
+
78
+
79
+ <!-- README_AWQ.md-provided-files start -->
80
+ ## Provided files, and AWQ parameters
81
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
82
+
83
+ Models are released as sharded safetensors files.
84
+
85
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
86
+ | ------ | ---- | -- | ----------- | ------- | ---- |
87
+ | [main](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-AWQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.15 GB
88
+
89
+ <!-- README_AWQ.md-provided-files end -->
90
+ <!-- README_AWQ.md-text-generation-webui start -->
91
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
92
+
93
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
94
+
95
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
96
+
97
+ 1. Click the **Model tab**.
98
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/Mistral-7B-Instruct-v0.2-AWQ`.
99
+ 3. Click **Download**.
100
+ 4. The model will start downloading. Once it's finished it will say "Done".
101
+ 5. In the top left, click the refresh icon next to **Model**.
102
+ 6. In the **Model** dropdown, choose the model you just downloaded: `Mistral-7B-Instruct-v0.2-AWQ`
103
+ 7. Select **Loader: AutoAWQ**.
104
+ 8. Click Load, and the model will load and is now ready for use.
105
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
106
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
107
+ <!-- README_AWQ.md-text-generation-webui end -->
108
+ <!-- README_AWQ.md-use-from-vllm start -->
109
+ ## Multi-user inference server: vLLM
110
+
111
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
112
+
113
+ - Please ensure you are using vLLM version 0.2 or later.
114
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
115
+
116
+ For example:
117
+
118
+ ```shell
119
+ python3 -m vllm.entrypoints.api_server --model TheBloke/Mistral-7B-Instruct-v0.2-AWQ --quantization awq --dtype auto
120
+ ```
121
+
122
+ - When using vLLM from Python code, again set `quantization=awq`.
123
+
124
+ For example:
125
+
126
+ ```python
127
+ from vllm import LLM, SamplingParams
128
+ prompts = [
129
+ "Tell me about AI",
130
+ "Write a story about llamas",
131
+ "What is 291 - 150?",
132
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
133
+ ]
134
+ prompt_template=f'''<s>[INST] {prompt} [/INST]
135
+ '''
136
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
137
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
138
+ llm = LLM(model="TheBloke/Mistral-7B-Instruct-v0.2-AWQ", quantization="awq", dtype="auto")
139
+ outputs = llm.generate(prompts, sampling_params)
140
+ # Print the outputs.
141
+ for output in outputs:
142
+ prompt = output.prompt
143
+ generated_text = output.outputs[0].text
144
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
145
+ ```
146
+ <!-- README_AWQ.md-use-from-vllm start -->
147
+ <!-- README_AWQ.md-use-from-tgi start -->
148
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
149
+
150
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
151
+
152
+ Example Docker parameters:
153
+
154
+ ```shell
155
+ --model-id TheBloke/Mistral-7B-Instruct-v0.2-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
156
+ ```
157
+
158
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
159
+
160
+ ```shell
161
+ pip3 install huggingface-hub
162
+ ```
163
+
164
+ ```python
165
+ from huggingface_hub import InferenceClient
166
+ endpoint_url = "https://your-endpoint-url-here"
167
+ prompt = "Tell me about AI"
168
+ prompt_template=f'''<s>[INST] {prompt} [/INST]
169
+ '''
170
+ client = InferenceClient(endpoint_url)
171
+ response = client.text_generation(prompt,
172
+ max_new_tokens=128,
173
+ do_sample=True,
174
+ temperature=0.7,
175
+ top_p=0.95,
176
+ top_k=40,
177
+ repetition_penalty=1.1)
178
+ print(f"Model output: ", response)
179
+ ```
180
+ <!-- README_AWQ.md-use-from-tgi end -->
181
+ <!-- README_AWQ.md-use-from-python start -->
182
+ ## Inference from Python code using Transformers
183
+
184
+ ### Install the necessary packages
185
+
186
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
187
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
188
+
189
+ ```shell
190
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
191
+ ```
192
+
193
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
194
+
195
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
196
+
197
+ ```shell
198
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
199
+ ```
200
+
201
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
202
+
203
+ ```shell
204
+ pip3 uninstall -y autoawq
205
+ git clone https://github.com/casper-hansen/AutoAWQ
206
+ cd AutoAWQ
207
+ pip3 install .
208
+ ```
209
+
210
+ ### Transformers example code (requires Transformers 4.35.0 and later)
211
+
212
+ ```python
213
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
214
+ model_name_or_path = "TheBloke/Mistral-7B-Instruct-v0.2-AWQ"
215
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
216
+ model = AutoModelForCausalLM.from_pretrained(
217
+ model_name_or_path,
218
+ low_cpu_mem_usage=True,
219
+ device_map="cuda:0"
220
+ )
221
+ # Using the text streamer to stream output one token at a time
222
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
223
+ prompt = "Tell me about AI"
224
+ prompt_template=f'''<s>[INST] {prompt} [/INST]
225
+ '''
226
+ # Convert prompt to tokens
227
+ tokens = tokenizer(
228
+ prompt_template,
229
+ return_tensors='pt'
230
+ ).input_ids.cuda()
231
+ generation_params = {
232
+ "do_sample": True,
233
+ "temperature": 0.7,
234
+ "top_p": 0.95,
235
+ "top_k": 40,
236
+ "max_new_tokens": 512,
237
+ "repetition_penalty": 1.1
238
+ }
239
+ # Generate streamed output, visible one token at a time
240
+ generation_output = model.generate(
241
+ tokens,
242
+ streamer=streamer,
243
+ **generation_params
244
+ )
245
+ # Generation without a streamer, which will include the prompt in the output
246
+ generation_output = model.generate(
247
+ tokens,
248
+ **generation_params
249
+ )
250
+ # Get the tokens from the output, decode them, print them
251
+ token_output = generation_output[0]
252
+ text_output = tokenizer.decode(token_output)
253
+ print("model.generate output: ", text_output)
254
+ # Inference is also possible via Transformers' pipeline
255
+ from transformers import pipeline
256
+ pipe = pipeline(
257
+ "text-generation",
258
+ model=model,
259
+ tokenizer=tokenizer,
260
+ **generation_params
261
+ )
262
+ pipe_output = pipe(prompt_template)[0]['generated_text']
263
+ print("pipeline output: ", pipe_output)
264
+ ```
265
+ <!-- README_AWQ.md-use-from-python end -->
266
+ <!-- README_AWQ.md-compatibility start -->
267
+ ## Compatibility
268
+
269
+ The files provided are tested to work with:
270
+
271
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
272
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
273
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
274
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
275
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
276
+
277
+ <!-- README_AWQ.md-compatibility end -->
278
+ <!-- footer start -->
279
+ <!-- 200823 -->
280
+ ## Discord
281
+ For further support, and discussions on these models and AI in general, join us at:
282
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
283
+ ## Thanks, and how to contribute
284
+ Thanks to the [chirper.ai](https://chirper.ai) team!
285
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
286
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
287
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
288
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
289
+ * Patreon: https://patreon.com/TheBlokeAI
290
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
291
+ **Special thanks to**: Aemon Algiz.
292
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
293
+
294
+
295
+ Thank you to all my generous patrons and donaters!
296
+
297
+ And thank you again to a16z for their generous grant.
298
+
299
+ <!-- footer end -->
300
+
301
+ # Original model card: Mistral AI_'s Mistral 7B Instruct v0.2
302
+ # Model Card for Mistral-7B-Instruct-v0.2
303
+ The Mistral-7B-Instruct-v0.2 Large Language Model (LLM) is an improved instruct fine-tuned version of [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1).
304
+ For full details of this model please read our [paper](https://arxiv.org/abs/2310.06825) and [release blog post](https://mistral.ai/news/la-plateforme/).
305
+ ## Instruction format
306
+ In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.
307
+ E.g.
308
+ ```
309
+ text = "<s>[INST] What is your favourite condiment? [/INST]"
310
+ "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
311
+ "[INST] Do you have mayonnaise recipes? [/INST]"
312
+ ```
313
+ This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method:
314
+ ```python
315
+ from transformers import AutoModelForCausalLM, AutoTokenizer
316
+ device = "cuda" # the device to load the model onto
317
+ model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
318
+ tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
319
+ messages = [
320
+ {"role": "user", "content": "What is your favourite condiment?"},
321
+ {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
322
+ {"role": "user", "content": "Do you have mayonnaise recipes?"}
323
+ ]
324
+ encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
325
+
326
+ model_inputs = encodeds.to(device)
327
+ model.to(device)
328
+ generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
329
+ decoded = tokenizer.batch_decode(generated_ids)
330
+ print(decoded[0])
331
+ ```
332
+ ## Model Architecture
333
+ This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices:
334
+ - Grouped-Query Attention
335
+ - Sliding-Window Attention
336
+ - Byte-fallback BPE tokenizer
337
+ ## Troubleshooting
338
+ - If you see the following error:
339
+ ```
340
+ Traceback (most recent call last):
341
+ File "", line 1, in
342
+ File "/transformers/models/auto/auto_factory.py", line 482, in from_pretrained
343
+ config, kwargs = AutoConfig.from_pretrained(
344
+ File "/transformers/models/auto/configuration_auto.py", line 1022, in from_pretrained
345
+ config_class = CONFIG_MAPPING[config_dict["model_type"]]
346
+ File "/transformers/models/auto/configuration_auto.py", line 723, in getitem
347
+ raise KeyError(key)
348
+ KeyError: 'mistral'
349
+ ```
350
+ Installing transformers from source should solve the issue
351
+ pip install git+https://github.com/huggingface/transformers
352
+ This should not be required after transformers-v4.33.4.
353
+ ## Limitations
354
+ The Mistral 7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance.
355
+ It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
356
+ make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
357
+ ## The Mistral AI Team
358
+ Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Louis Ternon, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
359
+