Upload model to Hugging Face
Browse files- PPO-long-goal.zip +2 -2
- PPO-long-goal/data +16 -16
- PPO-long-goal/policy.optimizer.pth +1 -1
- PPO-long-goal/policy.pth +1 -1
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
PPO-long-goal.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a960b0dc459f5bea5b825e218d5486040c37006818cd360bde570e29ea97d26
|
3 |
+
size 150418
|
PPO-long-goal/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": true,
|
23 |
"policy_kwargs": {},
|
@@ -48,7 +48,7 @@
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,7 +57,7 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -70,7 +70,7 @@
|
|
70 |
"_current_progress_remaining": -0.02400000000000002,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3d225f5240>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3d225f52d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3d225f5360>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3d225f53f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3d225f5480>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3d225f5510>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3d225f55a0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3d225f5630>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3d225f56c0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3d225f5750>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3d225f57e0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3d225f5870>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f3d225e1d80>"
|
21 |
},
|
22 |
"verbose": true,
|
23 |
"policy_kwargs": {},
|
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1681954063854270154,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAOp0YkMDF6O+AADIQqkwEUIsnQFCkmo5QgavpkIAAMhC2/irQuUKOELLrnBDZRrPvgAAyEJLRydCZ2ERQia5OkI0zIpCAADIQgAAyEJnyl9Ca5l6Q0t2y70AAMhCmuwkQprsJEIWaFdCfU9zQgAAyEIAAMhCcvt8QpCmcEPJ+bS+AADIQjKnJkIxdRBC8x+cQuGjikIAAMhCAADIQl2EYEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
70 |
"_current_progress_remaining": -0.02400000000000002,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGqiMf5+x+7+UhpRSlIwBbJRNLQGMAXSUR0CEMAJdB0IUdX2UKGgGaAloD0MIOYB+37+5/j+UhpRSlGgVTS0BaBZHQIQxgoLG7z11fZQoaAZoCWgPQwglkX2QZcGUv5SGlFKUaBVNLQFoFkdAhDqnggow23V9lChoBmgJaA9DCJi9bDttjdc/lIaUUpRoFU0tAWgWR0CEQEygwoLHdX2UKGgGaAloD0MI0LTEymjkqz+UhpRSlGgVTS0BaBZHQIRA65LAYYR1fZQoaAZoCWgPQwhHWFTE6cQBQJSGlFKUaBVNLQFoFkdAhEJ8gpz90nV9lChoBmgJaA9DCEqyDkdXQSHAlIaUUpRoFU0tAWgWR0CEUlVKf4ATdX2UKGgGaAloD0MIGJgVinT/87+UhpRSlGgVTS0BaBZHQIRbWEug6EJ1fZQoaAZoCWgPQwgzwAXZsjwDQJSGlFKUaBVNLQFoFkdAhFwr08NhE3V9lChoBmgJaA9DCOT1YFJ8fAFAlIaUUpRoFU0tAWgWR0CEXmtRvWH2dX2UKGgGaAloD0MI3pGx2vy/ur+UhpRSlGgVTS0BaBZHQIRs4DoyKvV1fZQoaAZoCWgPQwgMB0KygEkHQJSGlFKUaBVNLQFoFkdAhHIRNATqS3V9lChoBmgJaA9DCMb4MHvZ1gFAlIaUUpRoFU0tAWgWR0CEcq0ZWJaadX2UKGgGaAloD0MIogvqW+Z0/z+UhpRSlGgVTS0BaBZHQIR04Chew9t1fZQoaAZoCWgPQwh6U5EKY2sAQJSGlFKUaBVNLQFoFkdAhIEdt2s7uHV9lChoBmgJaA9DCLDFbp9VxgRAlIaUUpRoFU0tAWgWR0CEiGzi0fHQdX2UKGgGaAloD0MIVyHlJ9U+/7+UhpRSlGgVTS0BaBZHQISJF4RmK651fZQoaAZoCWgPQwhXdyy2SYX2v5SGlFKUaBVNLQFoFkdAhIsaA4GUwHV9lChoBmgJaA9DCJbtQ95ydey/lIaUUpRoFU0tAWgWR0CE0cJ2MbWFdX2UKGgGaAloD0MIO1ESEmn7FkCUhpRSlGgVTS0BaBZHQITZ274BV+91fZQoaAZoCWgPQwhyTuyhfQwIQJSGlFKUaBVNLQFoFkdAhNqdDQZ4wHV9lChoBmgJaA9DCH3LnC6L6QRAlIaUUpRoFU0tAWgWR0CE3CQDmr80dX2UKGgGaAloD0MIM+AsJcs5QUCUhpRSlGgVTS0BaBZHQITrGixmkFh1fZQoaAZoCWgPQwhFgxQ8hbwDQJSGlFKUaBVNLQFoFkdAhPSjBdld1XV9lChoBmgJaA9DCI47pYP1YFFAlIaUUpRoFU0tAWgWR0CE9ZIpYs/ZdX2UKGgGaAloD0MIU7MHWoGDSUCUhpRSlGgVTS0BaBZHQIT30hTwUg11fZQoaAZoCWgPQwhVFoVdVAN8wJSGlFKUaBVLlGgWR0CFB8rUb1h9dX2UKGgGaAloD0MIUgyQaAIrTkCUhpRSlGgVTS0BaBZHQIUKTeCTUy51fZQoaAZoCWgPQwix3qgVpu8XQJSGlFKUaBVNLQFoFkdAhRPek56t1nV9lChoBmgJaA9DCB+g+3Jmu8K/lIaUUpRoFU0tAWgWR0CFFJOPeYUndX2UKGgGaAloD0MIEoPAyqFlJECUhpRSlGgVTS0BaBZHQIUeNCmdiDx1fZQoaAZoCWgPQwgs2EY82UlOQJSGlFKUaBVNLQFoFkdAhR+Y1P3ztnV9lChoBmgJaA9DCNaMDHIXYbo/lIaUUpRoFU0tAWgWR0CFJOqHXVbzdX2UKGgGaAloD0MIQ+T09XwhPECUhpRSlGgVTS0BaBZHQIUlROrQw9J1fZQoaAZoCWgPQwg5ChAFM/YZQJSGlFKUaBVNLQFoFkdAhS2mjbi6x3V9lChoBmgJaA9DCO7qVWR0LlFAlIaUUpRoFU0tAWgWR0CFLyre67NCdX2UKGgGaAloD0MIeA5lqIqp+b+UhpRSlGgVTS0BaBZHQIU1yzLOiWV1fZQoaAZoCWgPQwguGjIepcZLQJSGlFKUaBVNLQFoFkdAhTZn2AXl83V9lChoBmgJaA9DCKqZtRSQJhpAlIaUUpRoFU0tAWgWR0CFQYblzU7TdX2UKGgGaAloD0MInYNnQpPkAUCUhpRSlGgVTS0BaBZHQIVDhJ2+wkh1fZQoaAZoCWgPQwiFB82ueyvGP5SGlFKUaBVNLQFoFkdAhUlg6ltTDXV9lChoBmgJaA9DCCSAm8WLBQZAlIaUUpRoFU0tAWgWR0CFSb8XvYvndX2UKGgGaAloD0MIn69ZLhstGUCUhpRSlGgVTS0BaBZHQIVVJb8m8dx1fZQoaAZoCWgPQwj7sN6oFYYEQJSGlFKUaBVNLQFoFkdAhVbcIiTt9nV9lChoBmgJaA9DCHjt0obD0rw/lIaUUpRoFU0tAWgWR0CFXldFfAsTdX2UKGgGaAloD0MIsFbtmpAW+7+UhpRSlGgVTS0BaBZHQIVfAkmhM8J1fZQoaAZoCWgPQwgEVaNXA5TCP5SGlFKUaBVNLQFoFkdAhZ6ODjBEa3V9lChoBmgJaA9DCK98lufBXQNAlIaUUpRoFU0tAWgWR0CFn/dY4hlldX2UKGgGaAloD0MIZhNgWP6sGECUhpRSlGgVTS0BaBZHQIWntv/BFd91fZQoaAZoCWgPQwjT9q+sNCm9v5SGlFKUaBVNLQFoFkdAhahqlP8AJnV9lChoBmgJaA9DCOEkzR/TmgNAlIaUUpRoFU0tAWgWR0CFtpN7jT8YdX2UKGgGaAloD0MI8SvWcJF7vj+UhpRSlGgVTS0BaBZHQIW4GK8+Ro11fZQoaAZoCWgPQwioctpTcu4EQJSGlFKUaBVNLQFoFkdAhcFEbYK6WnV9lChoBmgJaA9DCLJHqBlSRbG/lIaUUpRoFU0tAWgWR0CFwe4ZuQ6qdX2UKGgGaAloD0MIMZi/QubqC8CUhpRSlGgVTS0BaBZHQIXRbNY8uBd1fZQoaAZoCWgPQwipaRfTTPeqv5SGlFKUaBVNLQFoFkdAhdO8EvCdjHV9lChoBmgJaA9DCKCNXDelvJY/lIaUUpRoFU0tAWgWR0CF3LblA/s3dX2UKGgGaAloD0MIqtTsgVbAFECUhpRSlGgVTS0BaBZHQIXdZIczZYh1fZQoaAZoCWgPQwgdkIR9O0kAQJSGlFKUaBVNLQFoFkdAhe735WRzR3V9lChoBmgJaA9DCIXpew3Bcck/lIaUUpRoFU0tAWgWR0CF8PAgPmPpdX2UKGgGaAloD0MIM25qoPmcy7+UhpRSlGgVTS0BaBZHQIX7bo6jnFJ1fZQoaAZoCWgPQwjkZyPXTSmzP5SGlFKUaBVNLQFoFkdAhfvL1EmY0HV9lChoBmgJaA9DCKlpF9NM96q/lIaUUpRoFU0tAWgWR0CGBd9rGipOdX2UKGgGaAloD0MIxooaTMMwAkCUhpRSlGgVTS0BaBZHQIYHdHe7+UB1fZQoaAZoCWgPQwh16V+SyhTLv5SGlFKUaBVNLQFoFkdAhg8M0xdpqXV9lChoBmgJaA9DCLLWUGovoqU/lIaUUpRoFU0tAWgWR0CGD9HWjGkvdX2UKGgGaAloD0MI78ouGFyTA0CUhpRSlGgVTS0BaBZHQIYeh+OOsDJ1fZQoaAZoCWgPQwhLcsCuJm8BQJSGlFKUaBVNLQFoFkdAhiDFq8DjinV9lChoBmgJaA9DCBKgppat9cO/lIaUUpRoFU0tAWgWR0CGK71FH8TBdX2UKGgGaAloD0MIxvtx++WTpb+UhpRSlGgVTS0BaBZHQIYspTGYKIB1fZQoaAZoCWgPQwj9v+rIkS4aQJSGlFKUaBVNLQFoFkdAhjye8XenAXV9lChoBmgJaA9DCC5zuiwmFgJAlIaUUpRoFU0tAWgWR0CGPwR28qWkdX2UKGgGaAloD0MI3pGx2vy/ur+UhpRSlGgVTS0BaBZHQIZIydvsJIF1fZQoaAZoCWgPQwhTB3k9mIQZQJSGlFKUaBVNLQFoFkdAhkmqrq+rVHV9lChoBmgJaA9DCMf0hCUekP+/lIaUUpRoFU0tAWgWR0CGnKYF7laKdX2UKGgGaAloD0MIp1mg3SHFyD+UhpRSlGgVTS0BaBZHQIafFPP9kz51fZQoaAZoCWgPQwh1O/vKgzT8v5SGlFKUaBVNLQFoFkdAhqevi97F9HV9lChoBmgJaA9DCEJ8YMd/gaA/lIaUUpRoFU0tAWgWR0CGqIQMhHLBdX2UKGgGaAloD0MI3QvMCkVaCMCUhpRSlGgVTS0BaBZHQIa4BpN9H+Z1fZQoaAZoCWgPQwgcXaW76yz3v5SGlFKUaBVNLQFoFkdAhrqDASFoMHV9lChoBmgJaA9DCDvD1JY6yNY/lIaUUpRoFU0tAWgWR0CGwnet0V8DdX2UKGgGaAloD0MIgH7fv3nx9r+UhpRSlGgVTS0BaBZHQIbC6w0O3Dx1fZQoaAZoCWgPQwgYWp2coTj3v5SGlFKUaBVNLQFoFkdAhtJiU5dWyXV9lChoBmgJaA9DCAQ4vYv349A/lIaUUpRoFU0tAWgWR0CG1Jv60pmVdX2UKGgGaAloD0MIxD9s6dGUEsCUhpRSlGgVTS0BaBZHQIbc8n5SFXd1fZQoaAZoCWgPQwj0piIVxlb3v5SGlFKUaBVNLQFoFkdAht2fs3Q2M3V9lChoBmgJaA9DCArWOJuOgPm/lIaUUpRoFU0tAWgWR0CG6vZZB9kSdX2UKGgGaAloD0MIAtTUsrU+97+UhpRSlGgVTS0BaBZHQIbsuSB9Tgl1fZQoaAZoCWgPQwha8Q2Fz1b5v5SGlFKUaBVNLQFoFkdAhvMBh6SkkHV9lChoBmgJaA9DCDxp4bIKW/i/lIaUUpRoFU0tAWgWR0CG83txdY4idX2UKGgGaAloD0MIO6buyi7Y9r+UhpRSlGgVTS0BaBZHQIb+Qp6QeV91fZQoaAZoCWgPQwj4bYjxmvcEwJSGlFKUaBVNLQFoFkdAhv/u89Oh03V9lChoBmgJaA9DCMai6exkcNU/lIaUUpRoFU0tAWgWR0CHB1Vo6CDmdX2UKGgGaAloD0MIb/PGSWGe97+UhpRSlGgVTS0BaBZHQIcIFJ4B3id1fZQoaAZoCWgPQwi9rIkFviIFwJSGlFKUaBVNLQFoFkdAhxlGPo3aSXV9lChoBmgJaA9DCOsB85Ap/wTAlIaUUpRoFU0tAWgWR0CHG4i1RceKdX2UKGgGaAloD0MI9KYiFcZW97+UhpRSlGgVTS0BaBZHQIcmZ8x9G7V1fZQoaAZoCWgPQwhy+KQTCeb5v5SGlFKUaBVNLQFoFkdAhydZz5oGp3V9lChoBmgJaA9DCLfRAN4CCcY/lIaUUpRoFU0tAWgWR0CHNzDHfdhzdX2UKGgGaAloD0MI0SSxpNz94D+UhpRSlGgVTS0BaBZHQIc5iCOFQEZ1ZS4="
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
PPO-long-goal/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 90105
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:288d893e44f9bd15aa7e7476d437bd0fcd2fe4a244dea9e61a132cd5bc49216e
|
3 |
size 90105
|
PPO-long-goal/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44417
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6929671d0a829f7b5137899c87b3344513486bed0f51ddc926bcd68086cc0c9f
|
3 |
size 44417
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: RoombaAToB-long-goal
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: RoombaAToB-long-goal
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -3.01 +/- 0.00
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4d9b1f1240>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4d9b1f12d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4d9b1f1360>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4d9b1f13f0>", "_build": "<function ActorCriticPolicy._build at 0x7f4d9b1f1480>", "forward": "<function ActorCriticPolicy.forward at 0x7f4d9b1f1510>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4d9b1f15a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4d9b1f1630>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4d9b1f16c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4d9b1f1750>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4d9b1f17e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4d9b1f1870>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4d9b1de1c0>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVuQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgLSwqFlIwBQ5R0lFKUjARoaWdolGgTKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaAtLCoWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCJLCoWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 204800, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681953225404979620, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAMOcHUOrNzY/4Ue5QgAAyEIAAMhCAADIQnZIgEIAAMhCAADIQmG1tUJkFCJDIM5SPtScu0IAAMhCAADIQhQNJkIAAMhCCg6eQgAAyEIAAMhClr4eQ80uMT4yaLdCAADIQgAAyEK9pz1CAADIQpxvwkIAAMhCAADIQuUMM0PKFS8/AADIQgAAyELXHQRCAADIQmpvM0IAAMhCAADIQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7//jhImYaUCUhpRSlIwBbJRNLQGMAXSUR0CDjn2B8QZodX2UKGgGaAloD0MIQl2kUBbTa0CUhpRSlGgVTS0BaBZHQIOOqQ7tAs11fZQoaAZoCWgPQwiw/zo3rYBwQJSGlFKUaBVNLQFoFkdAg5XNTcZccHV9lChoBmgJaA9DCLnGZ7J/W2dAlIaUUpRoFU0tAWgWR0CDmIEpy6tldX2UKGgGaAloD0MIpKoJom7Ta0CUhpRSlGgVTS0BaBZHQIOebM/yGzt1fZQoaAZoCWgPQwhDVyJQ/bJqQJSGlFKUaBVNLQFoFkdAg56gtvn8sXV9lChoBmgJaA9DCAGG5c83mGlAlIaUUpRoFU0tAWgWR0CDo/X6InBtdX2UKGgGaAloD0MIGw+22C33cECUhpRSlGgVTS0BaBZHQIOnNpudf9h1fZQoaAZoCWgPQwg7qpogaphpQJSGlFKUaBVNLQFoFkdAg60F/H5rQHV9lChoBmgJaA9DCBKhEWzchGhAlIaUUpRoFU0tAWgWR0CDrVCm/FisdX2UKGgGaAloD0MI1sbYCS/Ta0CUhpRSlGgVTS0BaBZHQIO2BiNKh+R1fZQoaAZoCWgPQwj9+iE2WGJpQJSGlFKUaBVNLQFoFkdAg7p7CzkZJnV9lChoBmgJaA9DCLLZkeq7L29AlIaUUpRoFU0tAWgWR0CDxuP9UCJXdX2UKGgGaAloD0MIOWOYE7RbZ0CUhpRSlGgVTS0BaBZHQIPHZfv4M4N1fZQoaAZoCWgPQwhV3o5wWtNrQJSGlFKUaBVNLQFoFkdAhBV+I/JNkHV9lChoBmgJaA9DCDJXBtWG9nBAlIaUUpRoFU0tAWgWR0CEGUJLuhK2dX2UKGgGaAloD0MIEVFM3gCjZkCUhpRSlGgVTS0BaBZHQIQg0zO5avB1fZQoaAZoCWgPQwhQVDasqVNmQJSGlFKUaBVNLQFoFkdAhCEN1yNn5HV9lChoBmgJaA9DCBEAHHv2GWLAlIaUUpRoFUseaBZHQIQjybBoEjh1fZQoaAZoCWgPQwibdFsiF6BmQJSGlFKUaBVNLQFoFkdAhCshoEjgRHV9lChoBmgJaA9DCEq4kEfwMW3AlIaUUpRoFUshaBZHQIQt7bQC0Wx1fZQoaAZoCWgPQwh+qZ83lURpQJSGlFKUaBVNLQFoFkdAhDARo7FKkHV9lChoBmgJaA9DCPfMkgA18m1AlIaUUpRoFU0tAWgWR0CEPObDMvAXdX2UKGgGaAloD0MIx9Rd2YXXZUCUhpRSlGgVTS0BaBZHQIQ/quEEkjZ1fZQoaAZoCWgPQwgTYFj+/ONpQJSGlFKUaBVNLQFoFkdAhExA2ycCo3V9lChoBmgJaA9DCAtBDkoY6GdAlIaUUpRoFU0tAWgWR0CETuqyWzF/dX2UKGgGaAloD0MIi/uPTAflcUCUhpRSlGgVTS0BaBZHQIRY8v0yxiZ1fZQoaAZoCWgPQwi/K4L/Le9lQJSGlFKUaBVNLQFoFkdAhFtcKgIyCXV9lChoBmgJaA9DCLIRiNd112ZAlIaUUpRoFU0tAWgWR0CEZSj7ALy+dX2UKGgGaAloD0MIf0+sU2XpZ0CUhpRSlGgVTS0BaBZHQIRntjkMkQh1fZQoaAZoCWgPQwjwayQJwmhbwJSGlFKUaBVLRGgWR0CEartG/etTdX2UKGgGaAloD0MID7QCQ5aacsCUhpRSlGgVSzxoFkdAhG+TxG2CunV9lChoBmgJaA9DCJUQrKoXlmlAlIaUUpRoFU0tAWgWR0CEcZ+w1R+CdX2UKGgGaAloD0MIUPutnSjmcUCUhpRSlGgVTS0BaBZHQIR0WqkuYhN1fZQoaAZoCWgPQwgyc4HL4wtnQJSGlFKUaBVNLQFoFkdAhID56dDpknV9lChoBmgJaA9DCMKKU60FdnTAlIaUUpRoFUseaBZHQISCt4FA3UB1fZQoaAZoCWgPQwiCHmrbMBRmQJSGlFKUaBVNLQFoFkdAhIc9M9KVZHV9lChoBmgJaA9DCIgs0sQ7oGZAlIaUUpRoFU0tAWgWR0CEiF2USqVAdX2UKGgGaAloD0MIeJs3TgphZkCUhpRSlGgVTS0BaBZHQISKlVBD5TJ1fZQoaAZoCWgPQwhjsyPV9+hnQJSGlFKUaBVNLQFoFkdAhJftfG+9J3V9lChoBmgJaA9DCLWK/tDMomZAlIaUUpRoFU0tAWgWR0CEnYpBHCoCdX2UKGgGaAloD0MILekoBzPkZUCUhpRSlGgVTS0BaBZHQISfoP/aQFN1fZQoaAZoCWgPQwj9+bZgKdNrQJSGlFKUaBVNLQFoFkdAhKH6y0KJEnV9lChoBmgJaA9DCCv3ArPCFGhAlIaUUpRoFU0tAWgWR0CEsxLQHAymdX2UKGgGaAloD0MIArwFEhSFaECUhpRSlGgVTS0BaBZHQIT8Nu1ndwh1fZQoaAZoCWgPQwiEns2qT6VmQJSGlFKUaBVNLQFoFkdAhP3HFglWwXV9lChoBmgJaA9DCMGNlC0SqWBAlIaUUpRoFU0tAWgWR0CE/3LyMDOkdX2UKGgGaAloD0MIaRoUzQMWcsCUhpRSlGgVS99oFkdAhQ0e7+T/yXV9lChoBmgJaA9DCNdrelBQoGZAlIaUUpRoFU0tAWgWR0CFDd3A2ycDdX2UKGgGaAloD0MIVrq7zgZoYECUhpRSlGgVTS0BaBZHQIUW1S4vvjR1fZQoaAZoCWgPQwgJceXsnSJkQJSGlFKUaBVNLQFoFkdAhRk7yhBZ6nV9lChoBmgJaA9DCP0WnSy1GWhAlIaUUpRoFU0tAWgWR0CFK9x6OYICdX2UKGgGaAloD0MIrU7OUNwSUkCUhpRSlGgVTS0BaBZHQIUsh5JK8L91fZQoaAZoCWgPQwggs7PoneVSQJSGlFKUaBVNLQFoFkdAhTRfCAMDwHV9lChoBmgJaA9DCIKPwYpTFWhAlIaUUpRoFU0tAWgWR0CFNn4+r2g4dX2UKGgGaAloD0MIbR/yliupY0CUhpRSlGgVTS0BaBZHQIVFygK4QSV1fZQoaAZoCWgPQwg2r+qsFqhRQJSGlFKUaBVNLQFoFkdAhUaKf4AS4HV9lChoBmgJaA9DCDi9i/fj02BAlIaUUpRoFU0tAWgWR0CFTbQMQVbidX2UKGgGaAloD0MI1cvvNJlkYECUhpRSlGgVTS0BaBZHQIVPteKKpDN1fZQoaAZoCWgPQwgXDRmPUuZSQJSGlFKUaBVNLQFoFkdAhV+52hZha3V9lChoBmgJaA9DCDOK5ZbWU2RAlIaUUpRoFU0tAWgWR0CFYH/HYHxCdX2UKGgGaAloD0MIjkC8rl/3Z0CUhpRSlGgVTS0BaBZHQIVnnenAIpp1fZQoaAZoCWgPQwjgnXx67OlnQJSGlFKUaBVNLQFoFkdAhWkHJkoWpXV9lChoBmgJaA9DCC3qk9zh92FAlIaUUpRoFU0tAWgWR0CFccShakhzdX2UKGgGaAloD0MIz/kpjoMkZECUhpRSlGgVTS0BaBZHQIVyEafjCHh1fZQoaAZoCWgPQwgujV94JeVSQJSGlFKUaBVNLQFoFkdAhXc7lJYkmnV9lChoBmgJaA9DCH5TWKkgZGBAlIaUUpRoFU0tAWgWR0CFeLD2rXDndX2UKGgGaAloD0MIFw0Zj1LmUkCUhpRSlGgVTS0BaBZHQIWHNRUFSsN1fZQoaAZoCWgPQwink2x1uYdhQJSGlFKUaBVNLQFoFkdAhYeWU8mrsHV9lChoBmgJaA9DCA/Tvrk/AGtAlIaUUpRoFU0tAWgWR0CFj4zzErGzdX2UKGgGaAloD0MIRWKCGr73ZkCUhpRSlGgVTS0BaBZHQIWRu5rgwXZ1fZQoaAZoCWgPQwh15h4S/npzwJSGlFKUaBVLi2gWR0CFk3Rw6ySndX2UKGgGaAloD0MITweynlrgbkCUhpRSlGgVTS0BaBZHQIWgCraM72d1fZQoaAZoCWgPQwgAHHv23BNoQJSGlFKUaBVNLQFoFkdAhef12aDwpnV9lChoBmgJaA9DCN6QRgXOkGVAlIaUUpRoFU0tAWgWR0CF6g4G2TgVdX2UKGgGaAloD0MIDAIrh5ZaZ0CUhpRSlGgVTS0BaBZHQIXruxKQJX11fZQoaAZoCWgPQwhxk1FlGN9uQJSGlFKUaBVNLQFoFkdAhfuZqubI93V9lChoBmgJaA9DCO27IvjfHGZAlIaUUpRoFU0tAWgWR0CGBFEit7rtdX2UKGgGaAloD0MIwocSLXnSa0CUhpRSlGgVTS0BaBZHQIYGeBg/keZ1fZQoaAZoCWgPQwijWG5pNepnQJSGlFKUaBVNLQFoFkdAhggMWfseGXV9lChoBmgJaA9DCAeynlp95GVAlIaUUpRoFU0tAWgWR0CGGAhVU+9rdX2UKGgGaAloD0MIFLNeDOVnXkCUhpRSlGgVTS0BaBZHQIYilNYbKih1fZQoaAZoCWgPQwg1KnCyDdBgQJSGlFKUaBVNLQFoFkdAhiVanzg/DHV9lChoBmgJaA9DCBbbpKKxF3JAlIaUUpRoFU0tAWgWR0CGJxadMCcPdX2UKGgGaAloD0MI2JsYklP5cECUhpRSlGgVTS0BaBZHQIY1Gb3Gn4x1fZQoaAZoCWgPQwgXR+UmasNbQJSGlFKUaBVNLQFoFkdAhj3tb9qDb3V9lChoBmgJaA9DCDM0nghiA29AlIaUUpRoFU0tAWgWR0CGQGA+6iCbdX2UKGgGaAloD0MIsMbZdAToZ0CUhpRSlGgVTS0BaBZHQIZCY8OkLx91fZQoaAZoCWgPQwhKs3kcBiphQJSGlFKUaBVNLQFoFkdAhlBOw5eZ5XV9lChoBmgJaA9DCOLkfoeilWlAlIaUUpRoFU0tAWgWR0CGVSxgy/KydX2UKGgGaAloD0MIF3/bE6SXaUCUhpRSlGgVTS0BaBZHQIZWZTuOS4h1fZQoaAZoCWgPQwjRrkLKT2lgQJSGlFKUaBVNLQFoFkdAhldMniNsFnV9lChoBmgJaA9DCMZtNIC3GmhAlIaUUpRoFU0tAWgWR0CGXyFBY3efdX2UKGgGaAloD0MIPUM4ZlljYECUhpRSlGgVTS0BaBZHQIZlDkfcN6R1fZQoaAZoCWgPQwgDP6phP2VgQJSGlFKUaBVNLQFoFkdAhmaR+az/qHV9lChoBmgJaA9DCBcNGY9S5lJAlIaUUpRoFU0tAWgWR0CGZ9oUzsQedX2UKGgGaAloD0MIBaOSOoH/aECUhpRSlGgVTS0BaBZHQIZ0KJ9Aood1fZQoaAZoCWgPQwiSsG8nEZZpQJSGlFKUaBVNLQFoFkdAhnvrl/6O53V9lChoBmgJaA9DCNUhN8MN72NAlIaUUpRoFU0tAWgWR0CGfoXrMTvidX2UKGgGaAloD0MIUBpqFBIqZECUhpRSlGgVTS0BaBZHQIaAW7nPmgd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1130, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.5, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3d225f5240>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3d225f52d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3d225f5360>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3d225f53f0>", "_build": "<function ActorCriticPolicy._build at 0x7f3d225f5480>", "forward": "<function ActorCriticPolicy.forward at 0x7f3d225f5510>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3d225f55a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3d225f5630>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3d225f56c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3d225f5750>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3d225f57e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3d225f5870>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3d225e1d80>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVuQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgLSwqFlIwBQ5R0lFKUjARoaWdolGgTKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaAtLCoWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCJLCoWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 204800, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681954063854270154, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAOp0YkMDF6O+AADIQqkwEUIsnQFCkmo5QgavpkIAAMhC2/irQuUKOELLrnBDZRrPvgAAyEJLRydCZ2ERQia5OkI0zIpCAADIQgAAyEJnyl9Ca5l6Q0t2y70AAMhCmuwkQprsJEIWaFdCfU9zQgAAyEIAAMhCcvt8QpCmcEPJ+bS+AADIQjKnJkIxdRBC8x+cQuGjikIAAMhCAADIQl2EYEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGqiMf5+x+7+UhpRSlIwBbJRNLQGMAXSUR0CEMAJdB0IUdX2UKGgGaAloD0MIOYB+37+5/j+UhpRSlGgVTS0BaBZHQIQxgoLG7z11fZQoaAZoCWgPQwglkX2QZcGUv5SGlFKUaBVNLQFoFkdAhDqnggow23V9lChoBmgJaA9DCJi9bDttjdc/lIaUUpRoFU0tAWgWR0CEQEygwoLHdX2UKGgGaAloD0MI0LTEymjkqz+UhpRSlGgVTS0BaBZHQIRA65LAYYR1fZQoaAZoCWgPQwhHWFTE6cQBQJSGlFKUaBVNLQFoFkdAhEJ8gpz90nV9lChoBmgJaA9DCEqyDkdXQSHAlIaUUpRoFU0tAWgWR0CEUlVKf4ATdX2UKGgGaAloD0MIGJgVinT/87+UhpRSlGgVTS0BaBZHQIRbWEug6EJ1fZQoaAZoCWgPQwgzwAXZsjwDQJSGlFKUaBVNLQFoFkdAhFwr08NhE3V9lChoBmgJaA9DCOT1YFJ8fAFAlIaUUpRoFU0tAWgWR0CEXmtRvWH2dX2UKGgGaAloD0MI3pGx2vy/ur+UhpRSlGgVTS0BaBZHQIRs4DoyKvV1fZQoaAZoCWgPQwgMB0KygEkHQJSGlFKUaBVNLQFoFkdAhHIRNATqS3V9lChoBmgJaA9DCMb4MHvZ1gFAlIaUUpRoFU0tAWgWR0CEcq0ZWJaadX2UKGgGaAloD0MIogvqW+Z0/z+UhpRSlGgVTS0BaBZHQIR04Chew9t1fZQoaAZoCWgPQwh6U5EKY2sAQJSGlFKUaBVNLQFoFkdAhIEdt2s7uHV9lChoBmgJaA9DCLDFbp9VxgRAlIaUUpRoFU0tAWgWR0CEiGzi0fHQdX2UKGgGaAloD0MIVyHlJ9U+/7+UhpRSlGgVTS0BaBZHQISJF4RmK651fZQoaAZoCWgPQwhXdyy2SYX2v5SGlFKUaBVNLQFoFkdAhIsaA4GUwHV9lChoBmgJaA9DCJbtQ95ydey/lIaUUpRoFU0tAWgWR0CE0cJ2MbWFdX2UKGgGaAloD0MIO1ESEmn7FkCUhpRSlGgVTS0BaBZHQITZ274BV+91fZQoaAZoCWgPQwhyTuyhfQwIQJSGlFKUaBVNLQFoFkdAhNqdDQZ4wHV9lChoBmgJaA9DCH3LnC6L6QRAlIaUUpRoFU0tAWgWR0CE3CQDmr80dX2UKGgGaAloD0MIM+AsJcs5QUCUhpRSlGgVTS0BaBZHQITrGixmkFh1fZQoaAZoCWgPQwhFgxQ8hbwDQJSGlFKUaBVNLQFoFkdAhPSjBdld1XV9lChoBmgJaA9DCI47pYP1YFFAlIaUUpRoFU0tAWgWR0CE9ZIpYs/ZdX2UKGgGaAloD0MIU7MHWoGDSUCUhpRSlGgVTS0BaBZHQIT30hTwUg11fZQoaAZoCWgPQwhVFoVdVAN8wJSGlFKUaBVLlGgWR0CFB8rUb1h9dX2UKGgGaAloD0MIUgyQaAIrTkCUhpRSlGgVTS0BaBZHQIUKTeCTUy51fZQoaAZoCWgPQwix3qgVpu8XQJSGlFKUaBVNLQFoFkdAhRPek56t1nV9lChoBmgJaA9DCB+g+3Jmu8K/lIaUUpRoFU0tAWgWR0CFFJOPeYUndX2UKGgGaAloD0MIEoPAyqFlJECUhpRSlGgVTS0BaBZHQIUeNCmdiDx1fZQoaAZoCWgPQwgs2EY82UlOQJSGlFKUaBVNLQFoFkdAhR+Y1P3ztnV9lChoBmgJaA9DCNaMDHIXYbo/lIaUUpRoFU0tAWgWR0CFJOqHXVbzdX2UKGgGaAloD0MIQ+T09XwhPECUhpRSlGgVTS0BaBZHQIUlROrQw9J1fZQoaAZoCWgPQwg5ChAFM/YZQJSGlFKUaBVNLQFoFkdAhS2mjbi6x3V9lChoBmgJaA9DCO7qVWR0LlFAlIaUUpRoFU0tAWgWR0CFLyre67NCdX2UKGgGaAloD0MIeA5lqIqp+b+UhpRSlGgVTS0BaBZHQIU1yzLOiWV1fZQoaAZoCWgPQwguGjIepcZLQJSGlFKUaBVNLQFoFkdAhTZn2AXl83V9lChoBmgJaA9DCKqZtRSQJhpAlIaUUpRoFU0tAWgWR0CFQYblzU7TdX2UKGgGaAloD0MInYNnQpPkAUCUhpRSlGgVTS0BaBZHQIVDhJ2+wkh1fZQoaAZoCWgPQwiFB82ueyvGP5SGlFKUaBVNLQFoFkdAhUlg6ltTDXV9lChoBmgJaA9DCCSAm8WLBQZAlIaUUpRoFU0tAWgWR0CFSb8XvYvndX2UKGgGaAloD0MIn69ZLhstGUCUhpRSlGgVTS0BaBZHQIVVJb8m8dx1fZQoaAZoCWgPQwj7sN6oFYYEQJSGlFKUaBVNLQFoFkdAhVbcIiTt9nV9lChoBmgJaA9DCHjt0obD0rw/lIaUUpRoFU0tAWgWR0CFXldFfAsTdX2UKGgGaAloD0MIsFbtmpAW+7+UhpRSlGgVTS0BaBZHQIVfAkmhM8J1fZQoaAZoCWgPQwgEVaNXA5TCP5SGlFKUaBVNLQFoFkdAhZ6ODjBEa3V9lChoBmgJaA9DCK98lufBXQNAlIaUUpRoFU0tAWgWR0CFn/dY4hlldX2UKGgGaAloD0MIZhNgWP6sGECUhpRSlGgVTS0BaBZHQIWntv/BFd91fZQoaAZoCWgPQwjT9q+sNCm9v5SGlFKUaBVNLQFoFkdAhahqlP8AJnV9lChoBmgJaA9DCOEkzR/TmgNAlIaUUpRoFU0tAWgWR0CFtpN7jT8YdX2UKGgGaAloD0MI8SvWcJF7vj+UhpRSlGgVTS0BaBZHQIW4GK8+Ro11fZQoaAZoCWgPQwioctpTcu4EQJSGlFKUaBVNLQFoFkdAhcFEbYK6WnV9lChoBmgJaA9DCLJHqBlSRbG/lIaUUpRoFU0tAWgWR0CFwe4ZuQ6qdX2UKGgGaAloD0MIMZi/QubqC8CUhpRSlGgVTS0BaBZHQIXRbNY8uBd1fZQoaAZoCWgPQwipaRfTTPeqv5SGlFKUaBVNLQFoFkdAhdO8EvCdjHV9lChoBmgJaA9DCKCNXDelvJY/lIaUUpRoFU0tAWgWR0CF3LblA/s3dX2UKGgGaAloD0MIqtTsgVbAFECUhpRSlGgVTS0BaBZHQIXdZIczZYh1fZQoaAZoCWgPQwgdkIR9O0kAQJSGlFKUaBVNLQFoFkdAhe735WRzR3V9lChoBmgJaA9DCIXpew3Bcck/lIaUUpRoFU0tAWgWR0CF8PAgPmPpdX2UKGgGaAloD0MIM25qoPmcy7+UhpRSlGgVTS0BaBZHQIX7bo6jnFJ1fZQoaAZoCWgPQwjkZyPXTSmzP5SGlFKUaBVNLQFoFkdAhfvL1EmY0HV9lChoBmgJaA9DCKlpF9NM96q/lIaUUpRoFU0tAWgWR0CGBd9rGipOdX2UKGgGaAloD0MIxooaTMMwAkCUhpRSlGgVTS0BaBZHQIYHdHe7+UB1fZQoaAZoCWgPQwh16V+SyhTLv5SGlFKUaBVNLQFoFkdAhg8M0xdpqXV9lChoBmgJaA9DCLLWUGovoqU/lIaUUpRoFU0tAWgWR0CGD9HWjGkvdX2UKGgGaAloD0MI78ouGFyTA0CUhpRSlGgVTS0BaBZHQIYeh+OOsDJ1fZQoaAZoCWgPQwhLcsCuJm8BQJSGlFKUaBVNLQFoFkdAhiDFq8DjinV9lChoBmgJaA9DCBKgppat9cO/lIaUUpRoFU0tAWgWR0CGK71FH8TBdX2UKGgGaAloD0MIxvtx++WTpb+UhpRSlGgVTS0BaBZHQIYspTGYKIB1fZQoaAZoCWgPQwj9v+rIkS4aQJSGlFKUaBVNLQFoFkdAhjye8XenAXV9lChoBmgJaA9DCC5zuiwmFgJAlIaUUpRoFU0tAWgWR0CGPwR28qWkdX2UKGgGaAloD0MI3pGx2vy/ur+UhpRSlGgVTS0BaBZHQIZIydvsJIF1fZQoaAZoCWgPQwhTB3k9mIQZQJSGlFKUaBVNLQFoFkdAhkmqrq+rVHV9lChoBmgJaA9DCMf0hCUekP+/lIaUUpRoFU0tAWgWR0CGnKYF7laKdX2UKGgGaAloD0MIp1mg3SHFyD+UhpRSlGgVTS0BaBZHQIafFPP9kz51fZQoaAZoCWgPQwh1O/vKgzT8v5SGlFKUaBVNLQFoFkdAhqevi97F9HV9lChoBmgJaA9DCEJ8YMd/gaA/lIaUUpRoFU0tAWgWR0CGqIQMhHLBdX2UKGgGaAloD0MI3QvMCkVaCMCUhpRSlGgVTS0BaBZHQIa4BpN9H+Z1fZQoaAZoCWgPQwgcXaW76yz3v5SGlFKUaBVNLQFoFkdAhrqDASFoMHV9lChoBmgJaA9DCDvD1JY6yNY/lIaUUpRoFU0tAWgWR0CGwnet0V8DdX2UKGgGaAloD0MIgH7fv3nx9r+UhpRSlGgVTS0BaBZHQIbC6w0O3Dx1fZQoaAZoCWgPQwgYWp2coTj3v5SGlFKUaBVNLQFoFkdAhtJiU5dWyXV9lChoBmgJaA9DCAQ4vYv349A/lIaUUpRoFU0tAWgWR0CG1Jv60pmVdX2UKGgGaAloD0MIxD9s6dGUEsCUhpRSlGgVTS0BaBZHQIbc8n5SFXd1fZQoaAZoCWgPQwj0piIVxlb3v5SGlFKUaBVNLQFoFkdAht2fs3Q2M3V9lChoBmgJaA9DCArWOJuOgPm/lIaUUpRoFU0tAWgWR0CG6vZZB9kSdX2UKGgGaAloD0MIAtTUsrU+97+UhpRSlGgVTS0BaBZHQIbsuSB9Tgl1fZQoaAZoCWgPQwha8Q2Fz1b5v5SGlFKUaBVNLQFoFkdAhvMBh6SkkHV9lChoBmgJaA9DCDxp4bIKW/i/lIaUUpRoFU0tAWgWR0CG83txdY4idX2UKGgGaAloD0MIO6buyi7Y9r+UhpRSlGgVTS0BaBZHQIb+Qp6QeV91fZQoaAZoCWgPQwj4bYjxmvcEwJSGlFKUaBVNLQFoFkdAhv/u89Oh03V9lChoBmgJaA9DCMai6exkcNU/lIaUUpRoFU0tAWgWR0CHB1Vo6CDmdX2UKGgGaAloD0MIb/PGSWGe97+UhpRSlGgVTS0BaBZHQIcIFJ4B3id1fZQoaAZoCWgPQwi9rIkFviIFwJSGlFKUaBVNLQFoFkdAhxlGPo3aSXV9lChoBmgJaA9DCOsB85Ap/wTAlIaUUpRoFU0tAWgWR0CHG4i1RceKdX2UKGgGaAloD0MI9KYiFcZW97+UhpRSlGgVTS0BaBZHQIcmZ8x9G7V1fZQoaAZoCWgPQwhy+KQTCeb5v5SGlFKUaBVNLQFoFkdAhydZz5oGp3V9lChoBmgJaA9DCLfRAN4CCcY/lIaUUpRoFU0tAWgWR0CHNzDHfdhzdX2UKGgGaAloD0MI0SSxpNz94D+UhpRSlGgVTS0BaBZHQIc5iCOFQEZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1130, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.5, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": -3.00999999999998, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-19T18:40:34.217805"}
|