culteejen commited on
Commit
b0189a2
·
1 Parent(s): a4316ef

Upload model to Hugging Face

Browse files
BC-harcodemap-punish-stagnant.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86102d2ed7184fe20748be026b4007c1824165655af6c11b115323e98a5cf94b
3
+ size 44148
BC-harcodemap-punish-stagnant/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
BC-harcodemap-punish-stagnant/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fad6e8e5240>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fad6e8e52d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fad6e8e5360>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fad6e8e53f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fad6e8e5480>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fad6e8e5510>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fad6e8e55a0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fad6e8e5630>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fad6e8e56c0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fad6e8e5750>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fad6e8e57e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fad6e8e5870>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fad6e8dec40>"
21
+ },
22
+ "verbose": true,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 10
30
+ ],
31
+ "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]",
32
+ "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]",
33
+ "bounded_below": "[ True True True True True True True True True True]",
34
+ "bounded_above": "[ True True True True True True True True True True]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 4,
46
+ "num_timesteps": 204800,
47
+ "_total_timesteps": 200000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1681925951259124366,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAGuZekMCKuS/AADIQnL7fEIAAMhCrOIyQprsJEIWaFdCfU9zQgAAyEJJtXlDqHFBv3Zlh0L3VlhCId8GQjrvF0KmPEZCXLJvQgAAyELALMVCa5l6Q2gV4D+s4jJCAABwQgAAyEIAAMhCejScQnL7fEIAAEhCAAAgQlKsgEPj2Lk/1gAkQvWIOEJdLFRCAADIQgAAyEJeU45CAADIQrotIEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.02400000000000002,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrabrie52ecCUhpRSlIwBbJRNLQGMAXSUR0CFGSarFOwgdX2UKGgGaAloD0MI+wW7YZv5ecCUhpRSlGgVTS0BaBZHQIUsZZGKAJ91fZQoaAZoCWgPQwi/mC1Z1Z95wJSGlFKUaBVNLQFoFkdAhS7Jx3mmtXV9lChoBmgJaA9DCAExCRdyL3nAlIaUUpRoFU0tAWgWR0CFM5HZK3/hdX2UKGgGaAloD0MIndfYJaqeecCUhpRSlGgVTS0BaBZHQIU5CRKYiPh1fZQoaAZoCWgPQwguknajz8h5wJSGlFKUaBVNLQFoFkdAhUXypR4yGnV9lChoBmgJaA9DCPYoXI9CgnnAlIaUUpRoFU0tAWgWR0CFRyhJRO1wdX2UKGgGaAloD0MIGM3K9qF/ecCUhpRSlGgVTS0BaBZHQIVMPTmW+oN1fZQoaAZoCWgPQwjtgOuKmRV6wJSGlFKUaBVNLQFoFkdAhVGtSqEOAnV9lChoBmgJaA9DCDwUBfoEBHrAlIaUUpRoFU0tAWgWR0CFY5/7SApbdX2UKGgGaAloD0MIFhbcD3j7ecCUhpRSlGgVTS0BaBZHQIVlmGEf1Yh1fZQoaAZoCWgPQwi2+BQAo4Z5wJSGlFKUaBVNLQFoFkdAhWwrAP/aQHV9lChoBmgJaA9DCDMV4pG4+XnAlIaUUpRoFU0tAWgWR0CFckzLOiWWdX2UKGgGaAloD0MItoXnpWKeecCUhpRSlGgVTS0BaBZHQIWIg/Z/Tb51fZQoaAZoCWgPQwg1Cklmtc55wJSGlFKUaBVNLQFoFkdAhYstPYWcjXV9lChoBmgJaA9DCMU8K2nFyHnAlIaUUpRoFU0tAWgWR0CFkdXZGrjpdX2UKGgGaAloD0MIh29h3TjWecCUhpRSlGgVTS0BaBZHQIWYDRSgoPV1fZQoaAZoCWgPQwjlQ1A1ul55wJSGlFKUaBVNLQFoFkdAhdbqslsxf3V9lChoBmgJaA9DCEqYafvXL3rAlIaUUpRoFU0tAWgWR0CF2HktEofCdX2UKGgGaAloD0MI0ZLH0zJNecCUhpRSlGgVTS0BaBZHQIXcSg9Net11fZQoaAZoCWgPQwjLSpNSEMB5wJSGlFKUaBVNLQFoFkdAhd9zfrKNhnV9lChoBmgJaA9DCNXQBmCD6nnAlIaUUpRoFU0tAWgWR0CF63VpblijdX2UKGgGaAloD0MIoRFsXH9LecCUhpRSlGgVTS0BaBZHQIXsl+qioKl1fZQoaAZoCWgPQwgdjxmojLh5wJSGlFKUaBVNLQFoFkdAhfEtapxWDHV9lChoBmgJaA9DCJ3X2CWqnnnAlIaUUpRoFU0tAWgWR0CF9QGHHmzTdX2UKGgGaAloD0MIaCRCI9grecCUhpRSlGgVTS0BaBZHQIYCIcinpB51fZQoaAZoCWgPQwj0UrExLyd6wJSGlFKUaBVNLQFoFkdAhgNhBzFMqXV9lChoBmgJaA9DCPIiE/CrTHnAlIaUUpRoFU0tAWgWR0CGB/AVwgkkdX2UKGgGaAloD0MI6Zyf4riZecCUhpRSlGgVTS0BaBZHQIYMA82aUiZ1fZQoaAZoCWgPQwg2dR4Vv795wJSGlFKUaBVNLQFoFkdAhhp5UT+NtXV9lChoBmgJaA9DCG02VmKeTHnAlIaUUpRoFU0tAWgWR0CGHGCoS+QEdX2UKGgGaAloD0MIHM2RlR9qecCUhpRSlGgVTS0BaBZHQIYgZjnV5KR1fZQoaAZoCWgPQwi/mC1Z1Z95wJSGlFKUaBVNLQFoFkdAhiLe4smOVHV9lChoBmgJaA9DCMsRMpAnuXnAlIaUUpRoFU0tAWgWR0CGKyKYRdyDdX2UKGgGaAloD0MIYvcdw2OPecCUhpRSlGgVTS0BaBZHQIYsJOzposZ1fZQoaAZoCWgPQwheoKTAAox5wJSGlFKUaBVNLQFoFkdAhi9g/C66KHV9lChoBmgJaA9DCPQZUG8GYnnAlIaUUpRoFU0tAWgWR0CGMZzDGcWkdX2UKGgGaAloD0MIZFsGnGVvecCUhpRSlGgVTS0BaBZHQIY8DMFEAo51fZQoaAZoCWgPQwiaQ1ILZQ55wJSGlFKUaBVNLQFoFkdAhj3Tc6/7BXV9lChoBmgJaA9DCNqM0xAVJ3nAlIaUUpRoFU0tAWgWR0CGQuYP5HmSdX2UKGgGaAloD0MIzTy5pgD6eMCUhpRSlGgVTS0BaBZHQIZHMxIre691fZQoaAZoCWgPQwi/mC1Z1Z95wJSGlFKUaBVNLQFoFkdAhla1XeWOZXV9lChoBmgJaA9DCHodcchGoXnAlIaUUpRoFU0tAWgWR0CGWLDiOvMbdX2UKGgGaAloD0MIRx6ILJJrecCUhpRSlGgVTS0BaBZHQIZeKsjmjj91fZQoaAZoCWgPQwi+g584gNR5wJSGlFKUaBVNLQFoFkdAhmNUdJaq0nV9lChoBmgJaA9DCBah2AoabnnAlIaUUpRoFU0tAWgWR0CGque2d/aydX2UKGgGaAloD0MIppiDoGPlecCUhpRSlGgVTS0BaBZHQIasU0vXbud1fZQoaAZoCWgPQwjbwYh9QpF5wJSGlFKUaBVNLQFoFkdAhrCFxn3+M3V9lChoBmgJaA9DCIy+gjTjSnnAlIaUUpRoFU0tAWgWR0CGs/CXyAhCdX2UKGgGaAloD0MIQFHZsCaWecCUhpRSlGgVTS0BaBZHQIbES5LAYYR1fZQoaAZoCWgPQwiiJ2VSw3J5wJSGlFKUaBVNLQFoFkdAhsX18b70nXV9lChoBmgJaA9DCEDfFiwVlnnAlIaUUpRoFU0tAWgWR0CGy9XL/0dzdX2UKGgGaAloD0MIieqtge2VecCUhpRSlGgVTS0BaBZHQIbQV2HLzPN1fZQoaAZoCWgPQwjL1Y9Nsmh5wJSGlFKUaBVNLQFoFkdAhuBNP557gXV9lChoBmgJaA9DCC8zbJT1ennAlIaUUpRoFU0tAWgWR0CG4kvA44p+dX2UKGgGaAloD0MIWdqpuZxbecCUhpRSlGgVTS0BaBZHQIbnusLfDUF1fZQoaAZoCWgPQwhLHk/LT695wJSGlFKUaBVNLQFoFkdAhux8Lronr3V9lChoBmgJaA9DCL+YLVnVn3nAlIaUUpRoFU0tAWgWR0CG+6NfgJkYdX2UKGgGaAloD0MIaoZUUbzjecCUhpRSlGgVTS0BaBZHQIb91SydFv11fZQoaAZoCWgPQwhKlpNQ+pJ5wJSGlFKUaBVNLQFoFkdAhwNYN7SiNHV9lChoBmgJaA9DCL+YLVnVn3nAlIaUUpRoFU0tAWgWR0CHCAAfdRBNdX2UKGgGaAloD0MI+YGrPMGTecCUhpRSlGgVTS0BaBZHQIcR7a24NI91fZQoaAZoCWgPQwgwTKYKhqp5wJSGlFKUaBVNLQFoFkdAhxLUHpr1unV9lChoBmgJaA9DCL+YLVnVn3nAlIaUUpRoFU0tAWgWR0CHFat16mfodX2UKGgGaAloD0MIi4nNx7VUecCUhpRSlGgVTS0BaBZHQIcYCYNRWLh1fZQoaAZoCWgPQwjSim8ofIp5wJSGlFKUaBVNLQFoFkdAhyGuoxYaHnV9lChoBmgJaA9DCGN9A5Nbn3nAlIaUUpRoFU0tAWgWR0CHIzM8HObBdX2UKGgGaAloD0MIndfYJaqeecCUhpRSlGgVTS0BaBZHQIcnTVDrqt51fZQoaAZoCWgPQwh2/YLdMHZ5wJSGlFKUaBVNLQFoFkdAhyuN8eCCjHV9lChoBmgJaA9DCK95VWc1k3nAlIaUUpRoFU0tAWgWR0CHOZgWrOqvdX2UKGgGaAloD0MIBFjk18/FecCUhpRSlGgVTS0BaBZHQIc7au4gA6x1fZQoaAZoCWgPQwiZEHNJVQZ5wJSGlFKUaBVNLQFoFkdAh0CeZgG8mXV9lChoBmgJaA9DCPoI/OHng3nAlIaUUpRoFU0tAWgWR0CHRKc5Ke05dX2UKGgGaAloD0MINUWA0zuQecCUhpRSlGgVTS0BaBZHQIePqvNeMQ51fZQoaAZoCWgPQwjtC+iFuzZ5wJSGlFKUaBVNLQFoFkdAh5DMzMzMzXV9lChoBmgJaA9DCL+YLVnVn3nAlIaUUpRoFU0tAWgWR0CHlBNnoPkJdX2UKGgGaAloD0MITgte9NWlecCUhpRSlGgVTS0BaBZHQIeWqyOaOPx1fZQoaAZoCWgPQwj0MR8QqJh5wJSGlFKUaBVNLQFoFkdAh6M6dc0Lt3V9lChoBmgJaA9DCHe9NEXAjnnAlIaUUpRoFU0tAWgWR0CHpK+GoJiRdX2UKGgGaAloD0MIPfAxWLG3ecCUhpRSlGgVTS0BaBZHQIepxJiAlOZ1fZQoaAZoCWgPQwgNUvAUMop5wJSGlFKUaBVNLQFoFkdAh652Xb/OuHV9lChoBmgJaA9DCEUqjC2ElnnAlIaUUpRoFU0tAWgWR0CHu9B3zMA4dX2UKGgGaAloD0MIv5gtWdWfecCUhpRSlGgVTS0BaBZHQIe9imhufmN1fZQoaAZoCWgPQwhpboWwmrN5wJSGlFKUaBVNLQFoFkdAh8HoysS00HV9lChoBmgJaA9DCFA4u7VMlXnAlIaUUpRoFU0tAWgWR0CHxn/Q0GeMdX2UKGgGaAloD0MIs+pztdWhecCUhpRSlGgVTS0BaBZHQIfVsMoc7yR1fZQoaAZoCWgPQwi/mC1Z1Z95wJSGlFKUaBVNLQFoFkdAh9cou5BkZ3V9lChoBmgJaA9DCAHbwYh9innAlIaUUpRoFU0tAWgWR0CH29KdQO4HdX2UKGgGaAloD0MIt+ulKYLKecCUhpRSlGgVTS0BaBZHQIfgf9UCJXR1fZQoaAZoCWgPQwiscqHyr6h5wJSGlFKUaBVNLQFoFkdAh+2pnYg7o3V9lChoBmgJaA9DCMdLN4kBXHnAlIaUUpRoFU0tAWgWR0CH73Sn+AEudX2UKGgGaAloD0MIPX5v01/CecCUhpRSlGgVTS0BaBZHQIfzjF4s3AF1fZQoaAZoCWgPQwjM8QpED+N5wJSGlFKUaBVNLQFoFkdAh/dyMkyDZnV9lChoBmgJaA9DCK/PnPVpd3nAlIaUUpRoFU0tAWgWR0CIBVoAXEZSdX2UKGgGaAloD0MIHebLCzDFecCUhpRSlGgVTS0BaBZHQIgHIQBgeBB1fZQoaAZoCWgPQwhjJ7wEZ7d5wJSGlFKUaBVNLQFoFkdAiAzXXZoPCnV9lChoBmgJaA9DCL+YLVnVn3nAlIaUUpRoFU0tAWgWR0CIEgoPTXrddX2UKGgGaAloD0MICM2ue2uPecCUhpRSlGgVTS0BaBZHQIgi1Zs9B8h1fZQoaAZoCWgPQwi/mC1Z1Z95wJSGlFKUaBVNLQFoFkdAiCTZccENfHV9lChoBmgJaA9DCH6nyYz3THnAlIaUUpRoFU0tAWgWR0CIKt3Ehq0udWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 250,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
BC-harcodemap-punish-stagnant/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd0f785dba6d6b23a3ed882875bee4da4c44f33c1e9aaae45ea5f0a44ec40502
3
+ size 18973
BC-harcodemap-punish-stagnant/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ab2c81f08e7a22c3463a3410bd422313a85d8ff631eea872df9a9c27a570627
3
+ size 9295
BC-harcodemap-punish-stagnant/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
BC-harcodemap-punish-stagnant/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2
2
+ - Python: 3.10.9
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 2.0.0
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - RoombaAToB-harcodemap-punish-stagnant
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: BC
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: RoombaAToB-harcodemap-punish-stagnant
16
+ type: RoombaAToB-harcodemap-punish-stagnant
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -409.99 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **BC** Agent playing **RoombaAToB-harcodemap-punish-stagnant**
25
+ This is a trained model of a **BC** agent playing **RoombaAToB-harcodemap-punish-stagnant**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fad6e8e5240>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fad6e8e52d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fad6e8e5360>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fad6e8e53f0>", "_build": "<function ActorCriticPolicy._build at 0x7fad6e8e5480>", "forward": "<function ActorCriticPolicy.forward at 0x7fad6e8e5510>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fad6e8e55a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fad6e8e5630>", "_predict": "<function ActorCriticPolicy._predict at 0x7fad6e8e56c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fad6e8e5750>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fad6e8e57e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fad6e8e5870>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fad6e8dec40>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 204800, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681925951259124366, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAGuZekMCKuS/AADIQnL7fEIAAMhCrOIyQprsJEIWaFdCfU9zQgAAyEJJtXlDqHFBv3Zlh0L3VlhCId8GQjrvF0KmPEZCXLJvQgAAyELALMVCa5l6Q2gV4D+s4jJCAABwQgAAyEIAAMhCejScQnL7fEIAAEhCAAAgQlKsgEPj2Lk/1gAkQvWIOEJdLFRCAADIQgAAyEJeU45CAADIQrotIEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrabrie52ecCUhpRSlIwBbJRNLQGMAXSUR0CFGSarFOwgdX2UKGgGaAloD0MI+wW7YZv5ecCUhpRSlGgVTS0BaBZHQIUsZZGKAJ91fZQoaAZoCWgPQwi/mC1Z1Z95wJSGlFKUaBVNLQFoFkdAhS7Jx3mmtXV9lChoBmgJaA9DCAExCRdyL3nAlIaUUpRoFU0tAWgWR0CFM5HZK3/hdX2UKGgGaAloD0MIndfYJaqeecCUhpRSlGgVTS0BaBZHQIU5CRKYiPh1fZQoaAZoCWgPQwguknajz8h5wJSGlFKUaBVNLQFoFkdAhUXypR4yGnV9lChoBmgJaA9DCPYoXI9CgnnAlIaUUpRoFU0tAWgWR0CFRyhJRO1wdX2UKGgGaAloD0MIGM3K9qF/ecCUhpRSlGgVTS0BaBZHQIVMPTmW+oN1fZQoaAZoCWgPQwjtgOuKmRV6wJSGlFKUaBVNLQFoFkdAhVGtSqEOAnV9lChoBmgJaA9DCDwUBfoEBHrAlIaUUpRoFU0tAWgWR0CFY5/7SApbdX2UKGgGaAloD0MIFhbcD3j7ecCUhpRSlGgVTS0BaBZHQIVlmGEf1Yh1fZQoaAZoCWgPQwi2+BQAo4Z5wJSGlFKUaBVNLQFoFkdAhWwrAP/aQHV9lChoBmgJaA9DCDMV4pG4+XnAlIaUUpRoFU0tAWgWR0CFckzLOiWWdX2UKGgGaAloD0MItoXnpWKeecCUhpRSlGgVTS0BaBZHQIWIg/Z/Tb51fZQoaAZoCWgPQwg1Cklmtc55wJSGlFKUaBVNLQFoFkdAhYstPYWcjXV9lChoBmgJaA9DCMU8K2nFyHnAlIaUUpRoFU0tAWgWR0CFkdXZGrjpdX2UKGgGaAloD0MIh29h3TjWecCUhpRSlGgVTS0BaBZHQIWYDRSgoPV1fZQoaAZoCWgPQwjlQ1A1ul55wJSGlFKUaBVNLQFoFkdAhdbqslsxf3V9lChoBmgJaA9DCEqYafvXL3rAlIaUUpRoFU0tAWgWR0CF2HktEofCdX2UKGgGaAloD0MI0ZLH0zJNecCUhpRSlGgVTS0BaBZHQIXcSg9Net11fZQoaAZoCWgPQwjLSpNSEMB5wJSGlFKUaBVNLQFoFkdAhd9zfrKNhnV9lChoBmgJaA9DCNXQBmCD6nnAlIaUUpRoFU0tAWgWR0CF63VpblijdX2UKGgGaAloD0MIoRFsXH9LecCUhpRSlGgVTS0BaBZHQIXsl+qioKl1fZQoaAZoCWgPQwgdjxmojLh5wJSGlFKUaBVNLQFoFkdAhfEtapxWDHV9lChoBmgJaA9DCJ3X2CWqnnnAlIaUUpRoFU0tAWgWR0CF9QGHHmzTdX2UKGgGaAloD0MIaCRCI9grecCUhpRSlGgVTS0BaBZHQIYCIcinpB51fZQoaAZoCWgPQwj0UrExLyd6wJSGlFKUaBVNLQFoFkdAhgNhBzFMqXV9lChoBmgJaA9DCPIiE/CrTHnAlIaUUpRoFU0tAWgWR0CGB/AVwgkkdX2UKGgGaAloD0MI6Zyf4riZecCUhpRSlGgVTS0BaBZHQIYMA82aUiZ1fZQoaAZoCWgPQwg2dR4Vv795wJSGlFKUaBVNLQFoFkdAhhp5UT+NtXV9lChoBmgJaA9DCG02VmKeTHnAlIaUUpRoFU0tAWgWR0CGHGCoS+QEdX2UKGgGaAloD0MIHM2RlR9qecCUhpRSlGgVTS0BaBZHQIYgZjnV5KR1fZQoaAZoCWgPQwi/mC1Z1Z95wJSGlFKUaBVNLQFoFkdAhiLe4smOVHV9lChoBmgJaA9DCMsRMpAnuXnAlIaUUpRoFU0tAWgWR0CGKyKYRdyDdX2UKGgGaAloD0MIYvcdw2OPecCUhpRSlGgVTS0BaBZHQIYsJOzposZ1fZQoaAZoCWgPQwheoKTAAox5wJSGlFKUaBVNLQFoFkdAhi9g/C66KHV9lChoBmgJaA9DCPQZUG8GYnnAlIaUUpRoFU0tAWgWR0CGMZzDGcWkdX2UKGgGaAloD0MIZFsGnGVvecCUhpRSlGgVTS0BaBZHQIY8DMFEAo51fZQoaAZoCWgPQwiaQ1ILZQ55wJSGlFKUaBVNLQFoFkdAhj3Tc6/7BXV9lChoBmgJaA9DCNqM0xAVJ3nAlIaUUpRoFU0tAWgWR0CGQuYP5HmSdX2UKGgGaAloD0MIzTy5pgD6eMCUhpRSlGgVTS0BaBZHQIZHMxIre691fZQoaAZoCWgPQwi/mC1Z1Z95wJSGlFKUaBVNLQFoFkdAhla1XeWOZXV9lChoBmgJaA9DCHodcchGoXnAlIaUUpRoFU0tAWgWR0CGWLDiOvMbdX2UKGgGaAloD0MIRx6ILJJrecCUhpRSlGgVTS0BaBZHQIZeKsjmjj91fZQoaAZoCWgPQwi+g584gNR5wJSGlFKUaBVNLQFoFkdAhmNUdJaq0nV9lChoBmgJaA9DCBah2AoabnnAlIaUUpRoFU0tAWgWR0CGque2d/aydX2UKGgGaAloD0MIppiDoGPlecCUhpRSlGgVTS0BaBZHQIasU0vXbud1fZQoaAZoCWgPQwjbwYh9QpF5wJSGlFKUaBVNLQFoFkdAhrCFxn3+M3V9lChoBmgJaA9DCIy+gjTjSnnAlIaUUpRoFU0tAWgWR0CGs/CXyAhCdX2UKGgGaAloD0MIQFHZsCaWecCUhpRSlGgVTS0BaBZHQIbES5LAYYR1fZQoaAZoCWgPQwiiJ2VSw3J5wJSGlFKUaBVNLQFoFkdAhsX18b70nXV9lChoBmgJaA9DCEDfFiwVlnnAlIaUUpRoFU0tAWgWR0CGy9XL/0dzdX2UKGgGaAloD0MIieqtge2VecCUhpRSlGgVTS0BaBZHQIbQV2HLzPN1fZQoaAZoCWgPQwjL1Y9Nsmh5wJSGlFKUaBVNLQFoFkdAhuBNP557gXV9lChoBmgJaA9DCC8zbJT1ennAlIaUUpRoFU0tAWgWR0CG4kvA44p+dX2UKGgGaAloD0MIWdqpuZxbecCUhpRSlGgVTS0BaBZHQIbnusLfDUF1fZQoaAZoCWgPQwhLHk/LT695wJSGlFKUaBVNLQFoFkdAhux8Lronr3V9lChoBmgJaA9DCL+YLVnVn3nAlIaUUpRoFU0tAWgWR0CG+6NfgJkYdX2UKGgGaAloD0MIaoZUUbzjecCUhpRSlGgVTS0BaBZHQIb91SydFv11fZQoaAZoCWgPQwhKlpNQ+pJ5wJSGlFKUaBVNLQFoFkdAhwNYN7SiNHV9lChoBmgJaA9DCL+YLVnVn3nAlIaUUpRoFU0tAWgWR0CHCAAfdRBNdX2UKGgGaAloD0MI+YGrPMGTecCUhpRSlGgVTS0BaBZHQIcR7a24NI91fZQoaAZoCWgPQwgwTKYKhqp5wJSGlFKUaBVNLQFoFkdAhxLUHpr1unV9lChoBmgJaA9DCL+YLVnVn3nAlIaUUpRoFU0tAWgWR0CHFat16mfodX2UKGgGaAloD0MIi4nNx7VUecCUhpRSlGgVTS0BaBZHQIcYCYNRWLh1fZQoaAZoCWgPQwjSim8ofIp5wJSGlFKUaBVNLQFoFkdAhyGuoxYaHnV9lChoBmgJaA9DCGN9A5Nbn3nAlIaUUpRoFU0tAWgWR0CHIzM8HObBdX2UKGgGaAloD0MIndfYJaqeecCUhpRSlGgVTS0BaBZHQIcnTVDrqt51fZQoaAZoCWgPQwh2/YLdMHZ5wJSGlFKUaBVNLQFoFkdAhyuN8eCCjHV9lChoBmgJaA9DCK95VWc1k3nAlIaUUpRoFU0tAWgWR0CHOZgWrOqvdX2UKGgGaAloD0MIBFjk18/FecCUhpRSlGgVTS0BaBZHQIc7au4gA6x1fZQoaAZoCWgPQwiZEHNJVQZ5wJSGlFKUaBVNLQFoFkdAh0CeZgG8mXV9lChoBmgJaA9DCPoI/OHng3nAlIaUUpRoFU0tAWgWR0CHRKc5Ke05dX2UKGgGaAloD0MINUWA0zuQecCUhpRSlGgVTS0BaBZHQIePqvNeMQ51fZQoaAZoCWgPQwjtC+iFuzZ5wJSGlFKUaBVNLQFoFkdAh5DMzMzMzXV9lChoBmgJaA9DCL+YLVnVn3nAlIaUUpRoFU0tAWgWR0CHlBNnoPkJdX2UKGgGaAloD0MITgte9NWlecCUhpRSlGgVTS0BaBZHQIeWqyOaOPx1fZQoaAZoCWgPQwj0MR8QqJh5wJSGlFKUaBVNLQFoFkdAh6M6dc0Lt3V9lChoBmgJaA9DCHe9NEXAjnnAlIaUUpRoFU0tAWgWR0CHpK+GoJiRdX2UKGgGaAloD0MIPfAxWLG3ecCUhpRSlGgVTS0BaBZHQIepxJiAlOZ1fZQoaAZoCWgPQwgNUvAUMop5wJSGlFKUaBVNLQFoFkdAh652Xb/OuHV9lChoBmgJaA9DCEUqjC2ElnnAlIaUUpRoFU0tAWgWR0CHu9B3zMA4dX2UKGgGaAloD0MIv5gtWdWfecCUhpRSlGgVTS0BaBZHQIe9imhufmN1fZQoaAZoCWgPQwhpboWwmrN5wJSGlFKUaBVNLQFoFkdAh8HoysS00HV9lChoBmgJaA9DCFA4u7VMlXnAlIaUUpRoFU0tAWgWR0CHxn/Q0GeMdX2UKGgGaAloD0MIs+pztdWhecCUhpRSlGgVTS0BaBZHQIfVsMoc7yR1fZQoaAZoCWgPQwi/mC1Z1Z95wJSGlFKUaBVNLQFoFkdAh9cou5BkZ3V9lChoBmgJaA9DCAHbwYh9innAlIaUUpRoFU0tAWgWR0CH29KdQO4HdX2UKGgGaAloD0MIt+ulKYLKecCUhpRSlGgVTS0BaBZHQIfgf9UCJXR1fZQoaAZoCWgPQwiscqHyr6h5wJSGlFKUaBVNLQFoFkdAh+2pnYg7o3V9lChoBmgJaA9DCMdLN4kBXHnAlIaUUpRoFU0tAWgWR0CH73Sn+AEudX2UKGgGaAloD0MIPX5v01/CecCUhpRSlGgVTS0BaBZHQIfzjF4s3AF1fZQoaAZoCWgPQwjM8QpED+N5wJSGlFKUaBVNLQFoFkdAh/dyMkyDZnV9lChoBmgJaA9DCK/PnPVpd3nAlIaUUpRoFU0tAWgWR0CIBVoAXEZSdX2UKGgGaAloD0MIHebLCzDFecCUhpRSlGgVTS0BaBZHQIgHIQBgeBB1fZQoaAZoCWgPQwhjJ7wEZ7d5wJSGlFKUaBVNLQFoFkdAiAzXXZoPCnV9lChoBmgJaA9DCL+YLVnVn3nAlIaUUpRoFU0tAWgWR0CIEgoPTXrddX2UKGgGaAloD0MICM2ue2uPecCUhpRSlGgVTS0BaBZHQIgi1Zs9B8h1fZQoaAZoCWgPQwi/mC1Z1Z95wJSGlFKUaBVNLQFoFkdAiCTZccENfHV9lChoBmgJaA9DCH6nyYz3THnAlIaUUpRoFU0tAWgWR0CIKt3Ehq0udWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 250, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (950 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -409.98958690643383, "std_reward": 5.684341886080802e-14, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-19T10:52:26.923501"}