krotima1 commited on
Commit
96a5e8b
·
1 Parent(s): eef1e34

feat: add readme.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md CHANGED
@@ -1,3 +1,89 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: cc-by-sa-4.0
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - cs
4
+ - en
5
+ - de
6
+ - fr
7
+ - tu
8
+ - zh
9
+ - es
10
+ - ru
11
+ tags:
12
+ - Summarization
13
+ - abstractive summarization
14
+ - mbart-large-cc25
15
+ - Czech
16
+ - text2text generation
17
+ - text generation
18
  license: cc-by-sa-4.0
19
+ datasets:
20
+ - Multilingual_large_dataset_(multilarge)
21
+ - cnc/dm
22
+ - xsum
23
+ - mlsum
24
+ - cnewsum
25
+ - cnc
26
+ - sumeczech
27
+ metrics:
28
+ - rouge
29
+ - rougeraw
30
+ - MemesCS
31
  ---
32
+
33
+ # mbart25-multilingual-summarization-multilarge-cs
34
+ This model is a fine-tuned checkpoint of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on the Multilingual large summarization dataset focused on Czech texts to produce multilingual summaries.
35
+
36
+ ## Task
37
+ The model deals with a multi-sentence summary in eight different languages. With the idea of adding other foreign language documents, and by having a considerable amount of Czech documents, we aimed to improve model summarization in the Czech language. Supported languages: 'en_XX' : 'en', 'de_DE': 'de', 'es_XX': 'es', 'fr_XX':'fr', 'ru_RU':'ru', 'tr_TR':'tr'.
38
+
39
+ ## Dataset
40
+ Multilingual large summarization dataset consists of 10 sub-datasets mainly based on news and daily mails. For the training, it was used the entire training set and 72% of the validation set.
41
+ ```
42
+ Train set: 3 464 563 docs
43
+ Validation set: 121 260 docs
44
+ ```
45
+ | Stats | fragment | | | avg document length | | avg summary length | | Documents |
46
+ |-------------|----------|---------------------|--------------------|--------|---------|--------|--------|--------|
47
+ | __dataset__ |__compression__ | __density__ | __coverage__ | __nsent__ | __nwords__ | __nsent__ | __nwords__ | __count__ |
48
+ | cnc | 7.388 | 0.303 | 0.088 | 16.121 | 316.912 | 3.272 | 46.805 | 750K |
49
+ | sumeczech | 11.769 | 0.471 | 0.115 | 27.857 | 415.711 | 2.765 | 38.644 | 1M |
50
+ | cnndm | 13.688 | 2.983 | 0.538 | 32.783 | 676.026 | 4.134 | 54.036 | 300K |
51
+ | xsum | 18.378 | 0.479 | 0.194 | 18.607 | 369.134 | 1.000 | 21.127 | 225K|
52
+ | mlsum/tu | 8.666 | 5.418 | 0.461 | 14.271 | 214.496 | 1.793 | 25.675 | 274K |
53
+ | mlsum/de | 24.741 | 8.235 | 0.469 | 32.544 | 539.653 | 1.951 | 23.077 | 243K|
54
+ | mlsum/fr | 24.388 | 2.688 | 0.424 | 24.533 | 612.080 | 1.320 | 26.93 | 425K |
55
+ | mlsum/es | 36.185 | 3.705 | 0.510 | 31.914 | 746.927 | 1.142 | 21.671 | 291K |
56
+ | mlsum/ru | 78.909 | 1.194 | 0.246 | 62.141 | 948.079 | 1.012 | 11.976 | 27K|
57
+ | cnewsum | 20.183 | 0.000 | 0.000 | 16.834 | 438.271 | 1.109 | 21.926 | 304K |
58
+ #### Tokenization
59
+ Truncation and padding were set to 512 tokens for the encoder (input text) and 128 for the decoder (summary).
60
+
61
+ ## Training
62
+ Trained based on cross-entropy loss.
63
+ ```
64
+ Time: 3 days 8 hours
65
+ Epochs: 860K steps cca 8 (from 10)
66
+ GPUs: 4x NVIDIA A100-SXM4-40GB
67
+ eloss: 2.214 - 1.762
68
+ tloss: 3.365 - 1.445
69
+ ```
70
+
71
+ ### ROUGE results per individual dataset test set:
72
+ | ROUGE | ROUGE-1 | | | ROUGE-2 | | | ROUGE-L | | |
73
+ |-----------|---------|---------|-----------|--------|--------|-----------|--------|--------|---------|
74
+ | dataset |Precision | Recall | Fscore | Precision | Recall | Fscore | Precision | Recall | Fscore |
75
+ | cnc | 27.45 | 24.8 | 25.24 | 9.35 | 8.54 | 8.67 | 20.14 | 18.19 | 18.54 |
76
+ | sumeczech | 25.38 | 21.61 | 22.66 | 7.71 | 6.67 | 6.96 | 18.76 | 16.02 | 16.78 |
77
+ | cnndm | 41.97 | 42.61 | 41.05 | 19.64 | 19.88 | 19.16 | 29.38 | 29.85 | 28.73 |
78
+ | xsum | 39.18 | 39.8 | 38.83 | 16.59 | 16.98 | 16.5 | 31.25 | 31.74 | 30.96 |
79
+ | mlsum-tu | 51.02 | 47.95 | 47.72 | 36.15 | 34.07 | 33.9 | 44.59 | 41.9 | 41.74 |
80
+ | mlsum-de | 46.96 | 46.16 | 46.02 | 35.95 | 35.87 | 35.66 | 43.26 | 42.7 | 42.53 |
81
+ | mlsum-fr | 34.51 | 31.4 | 32.03 | 16.56 | 15.07 | 15.37 | 26.73 | 24.41 | 24.86 |
82
+ | mlsum-es | 32.62 | 29.66 | 30.21 | 13.3 | 12.2 | 12.39 | 26.24 | 24.02 | 24.4 |
83
+ | mlsum-ru | 1.25 | 1.54 | 1.31 | 0.46 | 0.46 | 0.44 | 1.25 | 1.54 | 1.31 |
84
+ | cnewsum | 26.43 | 29.44 | 26.38 | 7.38 | 8.52 | 7.46 | 25.99 | 28.94 | 25.92 |
85
+
86
+ # USAGE
87
+ ```
88
+ soon
89
+ ```