Added comparison to null distribution for stats
Browse filesAdded comparison to null distribution for stats.
Also made some small changes to the code organization.
- in_silico_perturber_stats.py +337 -0
in_silico_perturber_stats.py
ADDED
@@ -0,0 +1,337 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Geneformer in silico perturber stats generator.
|
3 |
+
|
4 |
+
Usage:
|
5 |
+
from geneformer import InSilicoPerturberStats
|
6 |
+
ispstats = InSilicoPerturberStats(mode="goal_state_shift",
|
7 |
+
combos=0,
|
8 |
+
anchor_gene=None,
|
9 |
+
cell_states_to_model={"disease":(["dcm"],["ctrl"],["hcm"])})
|
10 |
+
ispstats.get_stats("path/to/input_data",
|
11 |
+
None,
|
12 |
+
"path/to/output_directory",
|
13 |
+
"output_prefix")
|
14 |
+
"""
|
15 |
+
|
16 |
+
|
17 |
+
import os
|
18 |
+
import logging
|
19 |
+
import numpy as np
|
20 |
+
import pandas as pd
|
21 |
+
import pickle
|
22 |
+
import statsmodels.stats.multitest as smt
|
23 |
+
from pathlib import Path
|
24 |
+
from scipy.stats import ranksums
|
25 |
+
from tqdm.notebook import trange
|
26 |
+
|
27 |
+
from .tokenizer import TOKEN_DICTIONARY_FILE
|
28 |
+
|
29 |
+
GENE_NAME_ID_DICTIONARY_FILE = Path(__file__).parent / "gene_name_id_dict.pkl"
|
30 |
+
|
31 |
+
logger = logging.getLogger(__name__)
|
32 |
+
|
33 |
+
# invert dictionary keys/values
|
34 |
+
def invert_dict(dictionary):
|
35 |
+
return {v: k for k, v in dictionary.items()}
|
36 |
+
|
37 |
+
# read raw dictionary files
|
38 |
+
def read_dictionaries(dir, cell_or_gene_emb):
|
39 |
+
dict_list = []
|
40 |
+
for file in os.listdir(dir):
|
41 |
+
# process only _raw.pickle files
|
42 |
+
if file.endswith("_raw.pickle"):
|
43 |
+
with open(f"{dir}/{file}", "rb") as fp:
|
44 |
+
cos_sims_dict = pickle.load(fp)
|
45 |
+
if cell_or_gene_emb == "cell":
|
46 |
+
cell_emb_dict = {k: v for k,
|
47 |
+
v in cos_sims_dict.items() if v and "cell_emb" in k}
|
48 |
+
dict_list += [cell_emb_dict]
|
49 |
+
return dict_list
|
50 |
+
|
51 |
+
# get complete gene list
|
52 |
+
def get_gene_list(dict_list):
|
53 |
+
gene_set = set()
|
54 |
+
for dict_i in dict_list:
|
55 |
+
gene_set.update([k[0] for k, v in dict_i.items() if v])
|
56 |
+
gene_list = list(gene_set)
|
57 |
+
gene_list.sort()
|
58 |
+
return gene_list
|
59 |
+
|
60 |
+
def n_detections(token, dict_list):
|
61 |
+
cos_sim_megalist = []
|
62 |
+
for dict_i in dict_list:
|
63 |
+
cos_sim_megalist += dict_i.get((token, "cell_emb"),[])
|
64 |
+
return len(cos_sim_megalist)
|
65 |
+
|
66 |
+
def get_fdr(pvalues):
|
67 |
+
return list(smt.multipletests(pvalues, alpha=0.05, method="fdr_bh")[1])
|
68 |
+
|
69 |
+
def isp_stats(cos_sims_df, dict_list, cell_states_to_model):
|
70 |
+
random_tuples = []
|
71 |
+
for i in trange(cos_sims_df.shape[0]):
|
72 |
+
token = cos_sims_df["Gene"][i]
|
73 |
+
for dict_i in dict_list:
|
74 |
+
random_tuples += dict_i.get((token, "cell_emb"),[])
|
75 |
+
goal_end_random_megalist = [goal_end for goal_end,alt_end,start_state in random_tuples]
|
76 |
+
alt_end_random_megalist = [alt_end for goal_end,alt_end,start_state in random_tuples]
|
77 |
+
start_state_random_megalist = [start_state for goal_end,alt_end,start_state in random_tuples]
|
78 |
+
|
79 |
+
# downsample to improve speed of ranksums
|
80 |
+
if len(goal_end_random_megalist) > 100_000:
|
81 |
+
random.seed(42)
|
82 |
+
goal_end_random_megalist = random.sample(goal_end_random_megalist, k=100_000)
|
83 |
+
if len(alt_end_random_megalist) > 100_000:
|
84 |
+
random.seed(42)
|
85 |
+
alt_end_random_megalist = random.sample(alt_end_random_megalist, k=100_000)
|
86 |
+
if len(start_state_random_megalist) > 100_000:
|
87 |
+
random.seed(42)
|
88 |
+
start_state_random_megalist = random.sample(start_state_random_megalist, k=100_000)
|
89 |
+
|
90 |
+
names=["Gene",
|
91 |
+
"Gene_name",
|
92 |
+
"Ensembl_ID",
|
93 |
+
"Shift_from_goal_end",
|
94 |
+
"Shift_from_alt_end",
|
95 |
+
"Goal_end_vs_random_pval",
|
96 |
+
"Alt_end_vs_random_pval"]
|
97 |
+
cos_sims_full_df = pd.DataFrame(columns=names)
|
98 |
+
|
99 |
+
for i in trange(cos_sims_df.shape[0]):
|
100 |
+
token = cos_sims_df["Gene"][i]
|
101 |
+
name = cos_sims_df["Gene_name"][i]
|
102 |
+
ensembl_id = cos_sims_df["Ensembl_ID"][i]
|
103 |
+
token_tuples = []
|
104 |
+
|
105 |
+
for dict_i in dict_list:
|
106 |
+
token_tuples += dict_i.get((token, "cell_emb"),[])
|
107 |
+
|
108 |
+
goal_end_cos_sim_megalist = [goal_end for goal_end,alt_end,start_state in token_tuples]
|
109 |
+
alt_end_cos_sim_megalist = [alt_end for goal_end,alt_end,start_state in token_tuples]
|
110 |
+
|
111 |
+
mean_goal_end = np.mean(goal_end_cos_sim_megalist)
|
112 |
+
mean_alt_end = np.mean(alt_end_cos_sim_megalist)
|
113 |
+
|
114 |
+
pval_goal_end = ranksums(goal_end_random_megalist,goal_end_cos_sim_megalist).pvalue
|
115 |
+
pval_alt_end = ranksums(alt_end_random_megalist,alt_end_cos_sim_megalist).pvalue
|
116 |
+
|
117 |
+
data_i = [token,
|
118 |
+
name,
|
119 |
+
ensembl_id,
|
120 |
+
mean_goal_end,
|
121 |
+
mean_alt_end,
|
122 |
+
pval_goal_end,
|
123 |
+
pval_alt_end]
|
124 |
+
|
125 |
+
cos_sims_df_i = pd.DataFrame(dict(zip(names,data_i)),index=[i])
|
126 |
+
cos_sims_full_df = pd.concat([cos_sims_full_df,cos_sims_df_i])
|
127 |
+
|
128 |
+
cos_sims_full_df["Goal_end_FDR"] = get_fdr(list(cos_sims_full_df["Goal_end_vs_random_pval"]))
|
129 |
+
cos_sims_full_df["Alt_end_FDR"] = get_fdr(list(cos_sims_full_df["Alt_end_vs_random_pval"]))
|
130 |
+
|
131 |
+
return cos_sims_full_df
|
132 |
+
|
133 |
+
def isp_stats_vs_null(cos_sims_df, dict_list, null_dict_list):
|
134 |
+
cos_sims_full_df = cos_sims_df.copy()
|
135 |
+
|
136 |
+
# I think pre-initializing is faster than concatenating
|
137 |
+
cos_sims_full_df["Shift_avg"] = np.empty(cos_sims_df.shape[0], dtype=float)
|
138 |
+
cos_sims_full_df["Shift_pval"] = np.empty(cos_sims_df.shape[0], dtype=float)
|
139 |
+
cos_sims_full_df["Null_avg"] = np.empty(cos_sims_df.shape[0], dtype=float)
|
140 |
+
cos_sims_full_df["N_Detections"] = np.empty(cos_sims_df.shape[0], dtype="uint_32")
|
141 |
+
cos_sims_full_df["N_Detections_null"] = np.empty(cos_sims_df.shape[0], dtype="uint_32")
|
142 |
+
|
143 |
+
for i in trange(cos_sims_df.shape[0]):
|
144 |
+
token = cos_sims_df["Gene"][i]
|
145 |
+
name = cos_sims_df["Gene_name"][i]
|
146 |
+
ensembl_id = cos_sims_df["Ensembl_ID"][i]
|
147 |
+
token_shifts = []
|
148 |
+
null_shifts = []
|
149 |
+
|
150 |
+
for dict_i in dict_list:
|
151 |
+
token_tuples += dict_i.get((token, "cell_emb"),[])
|
152 |
+
|
153 |
+
for dict_i in null_dict_list:
|
154 |
+
null_tuples += dict_i.get((token, "cell_emb"),[])
|
155 |
+
|
156 |
+
cos_sims_full_df.loc[i, "Shift_pvalue"] = ranksums(token_shifts,
|
157 |
+
null_shifts, nan_policy="omit").pvalue
|
158 |
+
cos_sims_full_df.loc[i, "Shift_avg"] = np.mean(token_shifts)
|
159 |
+
cos_sims_full_df.loc[i, "Null_avg"] = np.mean(null_shifts)
|
160 |
+
cos_sims_full_df.loc[i, "N_Detections"] = len(token_shifts)
|
161 |
+
cos_sims_full_df.loc[i, "N_Detections_null"] = len(null_shifts)
|
162 |
+
|
163 |
+
cos_sims_full_df["Shift_FDR"] = get_fdr(cos_sims_full_df["Shift_pvalue"])
|
164 |
+
return cos_sims_full_df
|
165 |
+
|
166 |
+
class InSilicoPerturberStats:
|
167 |
+
valid_option_dict = {
|
168 |
+
"mode": {"goal_state_shift","vs_null","vs_random"},
|
169 |
+
"combos": {0,1,2},
|
170 |
+
"anchor_gene": {None, str},
|
171 |
+
"cell_states_to_model": {None, dict},
|
172 |
+
}
|
173 |
+
def __init__(
|
174 |
+
self,
|
175 |
+
mode="vs_random",
|
176 |
+
combos=0,
|
177 |
+
anchor_gene=None,
|
178 |
+
cell_states_to_model=None,
|
179 |
+
token_dictionary_file=TOKEN_DICTIONARY_FILE,
|
180 |
+
gene_name_id_dictionary_file=GENE_NAME_ID_DICTIONARY_FILE,
|
181 |
+
):
|
182 |
+
"""
|
183 |
+
Initialize in silico perturber stats generator.
|
184 |
+
|
185 |
+
Parameters
|
186 |
+
----------
|
187 |
+
mode : {"goal_state_shift","vs_null","vs_random"}
|
188 |
+
Type of stats.
|
189 |
+
"goal_state_shift": perturbation vs. random for desired cell state shift
|
190 |
+
"vs_null": perturbation vs. null from provided null distribution dataset
|
191 |
+
"vs_random": perturbation vs. random gene perturbations in that cell (no goal direction)
|
192 |
+
combos : {0,1,2}
|
193 |
+
Whether to perturb genes individually (0), in pairs (1), or in triplets (2).
|
194 |
+
anchor_gene : None, str
|
195 |
+
ENSEMBL ID of gene to use as anchor in combination perturbations.
|
196 |
+
For example, if combos=1 and anchor_gene="ENSG00000148400":
|
197 |
+
anchor gene will be perturbed in combination with each other gene.
|
198 |
+
cell_states_to_model: None, dict
|
199 |
+
Cell states to model if testing perturbations that achieve goal state change.
|
200 |
+
Single-item dictionary with key being cell attribute (e.g. "disease").
|
201 |
+
Value is tuple of three lists indicating start state, goal end state, and alternate possible end states.
|
202 |
+
token_dictionary_file : Path
|
203 |
+
Path to pickle file containing token dictionary (Ensembl ID:token).
|
204 |
+
gene_name_id_dictionary_file : Path
|
205 |
+
Path to pickle file containing gene name to ID dictionary (gene name:Ensembl ID).
|
206 |
+
"""
|
207 |
+
|
208 |
+
self.mode = mode
|
209 |
+
self.combos = combos
|
210 |
+
self.anchor_gene = anchor_gene
|
211 |
+
self.cell_states_to_model = cell_states_to_model
|
212 |
+
|
213 |
+
self.validate_options()
|
214 |
+
|
215 |
+
# load token dictionary (Ensembl IDs:token)
|
216 |
+
with open(token_dictionary_file, "rb") as f:
|
217 |
+
self.gene_token_dict = pickle.load(f)
|
218 |
+
|
219 |
+
# load gene name dictionary (gene name:Ensembl ID)
|
220 |
+
with open(gene_name_id_dictionary_file, "rb") as f:
|
221 |
+
self.gene_name_id_dict = pickle.load(f)
|
222 |
+
|
223 |
+
if anchor_gene is None:
|
224 |
+
self.anchor_token = None
|
225 |
+
else:
|
226 |
+
self.anchor_token = self.gene_token_dict[self.anchor_gene]
|
227 |
+
|
228 |
+
def validate_options(self):
|
229 |
+
for attr_name,valid_options in self.valid_option_dict.items():
|
230 |
+
attr_value = self.__dict__[attr_name]
|
231 |
+
if type(attr_value) not in {list, dict}:
|
232 |
+
if attr_value in valid_options:
|
233 |
+
continue
|
234 |
+
valid_type = False
|
235 |
+
for option in valid_options:
|
236 |
+
if (option in [int,list,dict]) and isinstance(attr_value, option):
|
237 |
+
valid_type = True
|
238 |
+
break
|
239 |
+
if valid_type:
|
240 |
+
continue
|
241 |
+
logger.error(
|
242 |
+
f"Invalid option for {attr_name}. " \
|
243 |
+
f"Valid options for {attr_name}: {valid_options}"
|
244 |
+
)
|
245 |
+
raise
|
246 |
+
|
247 |
+
if self.cell_states_to_model is not None:
|
248 |
+
if (len(self.cell_states_to_model.items()) == 1):
|
249 |
+
for key,value in self.cell_states_to_model.items():
|
250 |
+
if (len(value) == 3) and isinstance(value, tuple):
|
251 |
+
if isinstance(value[0],list) and isinstance(value[1],list) and isinstance(value[2],list):
|
252 |
+
if len(value[0]) == 1 and len(value[1]) == 1:
|
253 |
+
all_values = value[0]+value[1]+value[2]
|
254 |
+
if len(all_values) == len(set(all_values)):
|
255 |
+
continue
|
256 |
+
else:
|
257 |
+
logger.error(
|
258 |
+
"Cell states to model must be a single-item dictionary with " \
|
259 |
+
"key being cell attribute (e.g. 'disease') and value being " \
|
260 |
+
"tuple of three lists indicating start state, goal end state, and alternate possible end states. " \
|
261 |
+
"Values should all be unique. " \
|
262 |
+
"For example: {'disease':(['start_state'],['ctrl'],['alt_end'])}")
|
263 |
+
raise
|
264 |
+
if self.anchor_gene is not None:
|
265 |
+
self.anchor_gene = None
|
266 |
+
logger.warning(
|
267 |
+
"anchor_gene set to None. " \
|
268 |
+
"Currently, anchor gene not available " \
|
269 |
+
"when modeling multiple cell states.")
|
270 |
+
|
271 |
+
def get_stats(self,
|
272 |
+
input_data_directory,
|
273 |
+
null_dist_data_directory,
|
274 |
+
output_directory,
|
275 |
+
output_prefix):
|
276 |
+
"""
|
277 |
+
Get stats for in silico perturbation data and save as results in output_directory.
|
278 |
+
|
279 |
+
Parameters
|
280 |
+
----------
|
281 |
+
input_data_directory : Path
|
282 |
+
Path to directory containing cos_sim dictionary inputs
|
283 |
+
null_dist_data_directory : Path
|
284 |
+
Path to directory containing null distribution cos_sim dictionary inputs
|
285 |
+
output_directory : Path
|
286 |
+
Path to directory where perturbation data will be saved as .csv
|
287 |
+
output_prefix : str
|
288 |
+
Prefix for output .dataset
|
289 |
+
"""
|
290 |
+
|
291 |
+
if self.mode not in ["goal_state_shift", "vs_null"]:
|
292 |
+
logger.error(
|
293 |
+
"Currently, only modes available are stats for goal_state_shift \
|
294 |
+
and comparing vs a null distribution.")
|
295 |
+
raise
|
296 |
+
|
297 |
+
self.gene_token_id_dict = invert_dict(self.gene_token_dict)
|
298 |
+
self.gene_id_name_dict = invert_dict(self.gene_name_id_dict)
|
299 |
+
|
300 |
+
# obtain total gene list
|
301 |
+
gene_list = get_gene_list(dict_list)
|
302 |
+
|
303 |
+
# initiate results dataframe
|
304 |
+
cos_sims_df_initial = pd.DataFrame({"Gene": gene_list,
|
305 |
+
"Gene_name": [self.token_to_gene_name(item) \
|
306 |
+
for item in gene_list], \
|
307 |
+
"Ensembl_ID": [self.gene_token_id_dict[genes[1]] \
|
308 |
+
if isinstance(genes,tuple) else \
|
309 |
+
self.gene_token_id_dict[genes] \
|
310 |
+
for genes in gene_list]}, \
|
311 |
+
index=[i for i in range(len(gene_list))])
|
312 |
+
|
313 |
+
dict_list = read_dictionaries(input_data_directory, "cell")
|
314 |
+
if self.mode == "goal_state_shift":
|
315 |
+
cos_sims_df = isp_stats(cos_sims_df_initial, dict_list, self.cell_states_to_model)
|
316 |
+
|
317 |
+
# quantify number of detections of each gene
|
318 |
+
cos_sims_df["N_Detections"] = [n_detections(i, dict_list) for i in cos_sims_df["Gene"]]
|
319 |
+
|
320 |
+
# sort by shift to desired state
|
321 |
+
cos_sims_df = cos_sims_df.sort_values(by=["Shift_from_goal_end",
|
322 |
+
"Goal_end_FDR"])
|
323 |
+
elif self.mode == "vs_null":
|
324 |
+
dict_list = read_dictionaries(input_data_directory, "cell")
|
325 |
+
null_dict_list = read_dictionaries(null_dist_data_directory, "cell")
|
326 |
+
cos_sims_df = isp_stats_vs_null(cos_sims_df_initial, dict_list,
|
327 |
+
null_dict_list)
|
328 |
+
|
329 |
+
# save perturbation stats to output_path
|
330 |
+
output_path = (Path(output_directory) / output_prefix).with_suffix(".csv")
|
331 |
+
cos_sims_df.to_csv(output_path)
|
332 |
+
|
333 |
+
def token_to_gene_name(self, item):
|
334 |
+
if isinstance(item,int):
|
335 |
+
return self.gene_id_name_dict.get(self.gene_token_id_dict.get(item, np.nan), np.nan)
|
336 |
+
if isinstance(item,tuple):
|
337 |
+
return tuple([self.gene_id_name_dict.get(self.gene_token_id_dict.get(i, np.nan), np.nan) for i in item])
|