Christina Theodoris
Add data collator for gene classification and example for gene classification
edacd12
""" | |
Geneformer collator for gene classification. | |
Huggingface data collator modified to accommodate single-cell transcriptomics data for gene classification. | |
""" | |
import numpy as np | |
import torch | |
import warnings | |
from enum import Enum | |
from typing import Dict, List, Optional, Union | |
from transformers import ( | |
DataCollatorForTokenClassification, | |
SpecialTokensMixin, | |
BatchEncoding, | |
) | |
from transformers.utils import is_tf_available, is_torch_available, logging, to_py_obj | |
from transformers.utils.generic import _is_tensorflow, _is_torch | |
from .pretrainer import token_dictionary | |
EncodedInput = List[int] | |
logger = logging.get_logger(__name__) | |
VERY_LARGE_INTEGER = int( | |
1e30 | |
) # This is used to set the max input length for a model with infinite size input | |
LARGE_INTEGER = int( | |
1e20 | |
) # This is used when we need something big but slightly smaller than VERY_LARGE_INTEGER | |
# precollator functions | |
class ExplicitEnum(Enum): | |
""" | |
Enum with more explicit error message for missing values. | |
""" | |
def _missing_(cls, value): | |
raise ValueError( | |
"%r is not a valid %s, please select one of %s" | |
% (value, cls.__name__, str(list(cls._value2member_map_.keys()))) | |
) | |
class TruncationStrategy(ExplicitEnum): | |
""" | |
Possible values for the ``truncation`` argument in :meth:`PreTrainedTokenizerBase.__call__`. Useful for | |
tab-completion in an IDE. | |
""" | |
ONLY_FIRST = "only_first" | |
ONLY_SECOND = "only_second" | |
LONGEST_FIRST = "longest_first" | |
DO_NOT_TRUNCATE = "do_not_truncate" | |
class PaddingStrategy(ExplicitEnum): | |
""" | |
Possible values for the ``padding`` argument in :meth:`PreTrainedTokenizerBase.__call__`. Useful for tab-completion | |
in an IDE. | |
""" | |
LONGEST = "longest" | |
MAX_LENGTH = "max_length" | |
DO_NOT_PAD = "do_not_pad" | |
class TensorType(ExplicitEnum): | |
""" | |
Possible values for the ``return_tensors`` argument in :meth:`PreTrainedTokenizerBase.__call__`. Useful for | |
tab-completion in an IDE. | |
""" | |
PYTORCH = "pt" | |
TENSORFLOW = "tf" | |
NUMPY = "np" | |
JAX = "jax" | |
class PrecollatorForGeneClassification(SpecialTokensMixin): | |
mask_token = "<mask>" | |
mask_token_id = token_dictionary.get("<mask>") | |
pad_token = "<pad>" | |
pad_token_id = token_dictionary.get("<pad>") | |
padding_side = "right" | |
all_special_ids = [ | |
token_dictionary.get("<mask>"), | |
token_dictionary.get("<pad>") | |
] | |
model_input_names = ["input_ids"] | |
def _get_padding_truncation_strategies( | |
self, padding=True, truncation=False, max_length=None, pad_to_multiple_of=None, verbose=True, **kwargs | |
): | |
""" | |
Find the correct padding/truncation strategy with backward compatibility for old arguments (truncation_strategy | |
and pad_to_max_length) and behaviors. | |
""" | |
old_truncation_strategy = kwargs.pop("truncation_strategy", "do_not_truncate") | |
old_pad_to_max_length = kwargs.pop("pad_to_max_length", False) | |
# Backward compatibility for previous behavior, maybe we should deprecate it: | |
# If you only set max_length, it activates truncation for max_length | |
if max_length is not None and padding is False and truncation is False: | |
if verbose: | |
if not self.deprecation_warnings.get("Truncation-not-explicitly-activated", False): | |
logger.warning( | |
"Truncation was not explicitly activated but `max_length` is provided a specific value, " | |
"please use `truncation=True` to explicitly truncate examples to max length. " | |
"Defaulting to 'longest_first' truncation strategy. " | |
"If you encode pairs of sequences (GLUE-style) with the tokenizer you can select this strategy " | |
"more precisely by providing a specific strategy to `truncation`." | |
) | |
self.deprecation_warnings["Truncation-not-explicitly-activated"] = True | |
truncation = "longest_first" | |
# Get padding strategy | |
if padding is False and old_pad_to_max_length: | |
if verbose: | |
warnings.warn( | |
"The `pad_to_max_length` argument is deprecated and will be removed in a future version, " | |
"use `padding=True` or `padding='longest'` to pad to the longest sequence in the batch, or " | |
"use `padding='max_length'` to pad to a max length. In this case, you can give a specific " | |
"length with `max_length` (e.g. `max_length=45`) or leave max_length to None to pad to the " | |
"maximal input size of the model (e.g. 512 for Bert).", | |
FutureWarning, | |
) | |
if max_length is None: | |
padding_strategy = PaddingStrategy.LONGEST | |
else: | |
padding_strategy = PaddingStrategy.MAX_LENGTH | |
elif padding is not False: | |
if padding is True: | |
padding_strategy = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch | |
elif not isinstance(padding, PaddingStrategy): | |
padding_strategy = PaddingStrategy(padding) | |
elif isinstance(padding, PaddingStrategy): | |
padding_strategy = padding | |
else: | |
padding_strategy = PaddingStrategy.DO_NOT_PAD | |
# Get truncation strategy | |
if truncation is False and old_truncation_strategy != "do_not_truncate": | |
if verbose: | |
warnings.warn( | |
"The `truncation_strategy` argument is deprecated and will be removed in a future version, " | |
"use `truncation=True` to truncate examples to a max length. You can give a specific " | |
"length with `max_length` (e.g. `max_length=45`) or leave max_length to None to truncate to the " | |
"maximal input size of the model (e.g. 512 for Bert). " | |
" If you have pairs of inputs, you can give a specific truncation strategy selected among " | |
"`truncation='only_first'` (will only truncate the first sentence in the pairs) " | |
"`truncation='only_second'` (will only truncate the second sentence in the pairs) " | |
"or `truncation='longest_first'` (will iteratively remove tokens from the longest sentence in the pairs).", | |
FutureWarning, | |
) | |
truncation_strategy = TruncationStrategy(old_truncation_strategy) | |
elif truncation is not False: | |
if truncation is True: | |
truncation_strategy = ( | |
TruncationStrategy.LONGEST_FIRST | |
) # Default to truncate the longest sequences in pairs of inputs | |
elif not isinstance(truncation, TruncationStrategy): | |
truncation_strategy = TruncationStrategy(truncation) | |
elif isinstance(truncation, TruncationStrategy): | |
truncation_strategy = truncation | |
else: | |
truncation_strategy = TruncationStrategy.DO_NOT_TRUNCATE | |
# Set max length if needed | |
if max_length is None: | |
if padding_strategy == PaddingStrategy.MAX_LENGTH: | |
if self.model_max_length > LARGE_INTEGER: | |
if verbose: | |
if not self.deprecation_warnings.get("Asking-to-pad-to-max_length", False): | |
logger.warning( | |
"Asking to pad to max_length but no maximum length is provided and the model has no predefined maximum length. " | |
"Default to no padding." | |
) | |
self.deprecation_warnings["Asking-to-pad-to-max_length"] = True | |
padding_strategy = PaddingStrategy.DO_NOT_PAD | |
else: | |
max_length = self.model_max_length | |
if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE: | |
if self.model_max_length > LARGE_INTEGER: | |
if verbose: | |
if not self.deprecation_warnings.get("Asking-to-truncate-to-max_length", False): | |
logger.warning( | |
"Asking to truncate to max_length but no maximum length is provided and the model has no predefined maximum length. " | |
"Default to no truncation." | |
) | |
self.deprecation_warnings["Asking-to-truncate-to-max_length"] = True | |
truncation_strategy = TruncationStrategy.DO_NOT_TRUNCATE | |
else: | |
max_length = self.model_max_length | |
# Test if we have a padding token | |
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (not self.pad_token or self.pad_token_id < 0): | |
raise ValueError( | |
"Asking to pad but the tokenizer does not have a padding token. " | |
"Please select a token to use as `pad_token` `(tokenizer.pad_token = tokenizer.eos_token e.g.)` " | |
"or add a new pad token via `tokenizer.add_special_tokens({'pad_token': '[PAD]'})`." | |
) | |
# Check that we will truncate to a multiple of pad_to_multiple_of if both are provided | |
if ( | |
truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE | |
and padding_strategy != PaddingStrategy.DO_NOT_PAD | |
and pad_to_multiple_of is not None | |
and max_length is not None | |
and (max_length % pad_to_multiple_of != 0) | |
): | |
raise ValueError( | |
f"Truncation and padding are both activated but " | |
f"truncation length ({max_length}) is not a multiple of pad_to_multiple_of ({pad_to_multiple_of})." | |
) | |
return padding_strategy, truncation_strategy, max_length, kwargs | |
def pad( | |
self, | |
encoded_inputs: Union[ | |
BatchEncoding, | |
List[BatchEncoding], | |
Dict[str, EncodedInput], | |
Dict[str, List[EncodedInput]], | |
List[Dict[str, EncodedInput]], | |
], | |
padding: Union[bool, str, PaddingStrategy] = True, | |
max_length: Optional[int] = None, | |
pad_to_multiple_of: Optional[int] = None, | |
return_attention_mask: Optional[bool] = True, | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
verbose: bool = True, | |
) -> BatchEncoding: | |
""" | |
Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length | |
in the batch. | |
Padding side (left/right) padding token ids are defined at the tokenizer level (with ``self.padding_side``, | |
``self.pad_token_id`` and ``self.pad_token_type_id``) | |
.. note:: | |
If the ``encoded_inputs`` passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the | |
result will use the same type unless you provide a different tensor type with ``return_tensors``. In the | |
case of PyTorch tensors, you will lose the specific device of your tensors however. | |
Args: | |
encoded_inputs (:class:`~transformers.BatchEncoding`, list of :class:`~transformers.BatchEncoding`, :obj:`Dict[str, List[int]]`, :obj:`Dict[str, List[List[int]]` or :obj:`List[Dict[str, List[int]]]`): | |
Tokenized inputs. Can represent one input (:class:`~transformers.BatchEncoding` or :obj:`Dict[str, | |
List[int]]`) or a batch of tokenized inputs (list of :class:`~transformers.BatchEncoding`, `Dict[str, | |
List[List[int]]]` or `List[Dict[str, List[int]]]`) so you can use this method during preprocessing as | |
well as in a PyTorch Dataloader collate function. | |
Instead of :obj:`List[int]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors), | |
see the note above for the return type. | |
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): | |
Select a strategy to pad the returned sequences (according to the model's padding side and padding | |
index) among: | |
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a | |
single sequence if provided). | |
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the | |
maximum acceptable input length for the model if that argument is not provided. | |
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of | |
different lengths). | |
max_length (:obj:`int`, `optional`): | |
Maximum length of the returned list and optionally padding length (see above). | |
pad_to_multiple_of (:obj:`int`, `optional`): | |
If set will pad the sequence to a multiple of the provided value. | |
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability | |
>= 7.5 (Volta). | |
return_attention_mask (:obj:`bool`, `optional`): | |
Whether to return the attention mask. If left to the default, will return the attention mask according | |
to the specific tokenizer's default, defined by the :obj:`return_outputs` attribute. | |
`What are attention masks? <../glossary.html#attention-mask>`__ | |
return_tensors (:obj:`str` or :class:`~transformers.tokenization_utils_base.TensorType`, `optional`): | |
If set, will return tensors instead of list of python integers. Acceptable values are: | |
* :obj:`'tf'`: Return TensorFlow :obj:`tf.constant` objects. | |
* :obj:`'pt'`: Return PyTorch :obj:`torch.Tensor` objects. | |
* :obj:`'np'`: Return Numpy :obj:`np.ndarray` objects. | |
verbose (:obj:`bool`, `optional`, defaults to :obj:`True`): | |
Whether or not to print more information and warnings. | |
""" | |
# If we have a list of dicts, let's convert it in a dict of lists | |
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader | |
if isinstance(encoded_inputs, (list, tuple)) and isinstance(encoded_inputs[0], (dict, BatchEncoding)): | |
encoded_inputs = {key: [example[key] for example in encoded_inputs] for key in encoded_inputs[0].keys()} | |
# The model's main input name, usually `input_ids`, has be passed for padding | |
if self.model_input_names[0] not in encoded_inputs: | |
raise ValueError( | |
"You should supply an encoding or a list of encodings to this method" | |
f"that includes {self.model_input_names[0]}, but you provided {list(encoded_inputs.keys())}" | |
) | |
required_input = encoded_inputs[self.model_input_names[0]] | |
if not required_input: | |
if return_attention_mask: | |
encoded_inputs["attention_mask"] = [] | |
return encoded_inputs | |
# If we have PyTorch/TF/NumPy tensors/arrays as inputs, we cast them as python objects | |
# and rebuild them afterwards if no return_tensors is specified | |
# Note that we lose the specific device the tensor may be on for PyTorch | |
first_element = required_input[0] | |
if isinstance(first_element, (list, tuple)): | |
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. | |
index = 0 | |
while len(required_input[index]) == 0: | |
index += 1 | |
if index < len(required_input): | |
first_element = required_input[index][0] | |
# At this state, if `first_element` is still a list/tuple, it's an empty one so there is nothing to do. | |
if not isinstance(first_element, (int, list, tuple)): | |
if is_tf_available() and _is_tensorflow(first_element): | |
return_tensors = "tf" if return_tensors is None else return_tensors | |
elif is_torch_available() and _is_torch(first_element): | |
return_tensors = "pt" if return_tensors is None else return_tensors | |
elif isinstance(first_element, np.ndarray): | |
return_tensors = "np" if return_tensors is None else return_tensors | |
else: | |
raise ValueError( | |
f"type of {first_element} unknown: {type(first_element)}. " | |
f"Should be one of a python, numpy, pytorch or tensorflow object." | |
) | |
for key, value in encoded_inputs.items(): | |
encoded_inputs[key] = to_py_obj(value) | |
# Convert padding_strategy in PaddingStrategy | |
padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies( | |
padding=padding, max_length=max_length, verbose=verbose | |
) | |
required_input = encoded_inputs[self.model_input_names[0]] | |
if required_input and not isinstance(required_input[0], (list, tuple)): | |
encoded_inputs = self._pad( | |
encoded_inputs, | |
max_length=max_length, | |
padding_strategy=padding_strategy, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_attention_mask=return_attention_mask, | |
) | |
return BatchEncoding(encoded_inputs, tensor_type=return_tensors) | |
batch_size = len(required_input) | |
assert all( | |
len(v) == batch_size for v in encoded_inputs.values() | |
), "Some items in the output dictionary have a different batch size than others." | |
if padding_strategy == PaddingStrategy.LONGEST: | |
max_length = max(len(inputs) for inputs in required_input) | |
padding_strategy = PaddingStrategy.MAX_LENGTH | |
batch_outputs = {} | |
for i in range(batch_size): | |
inputs = dict((k, v[i]) for k, v in encoded_inputs.items()) | |
outputs = self._pad( | |
inputs, | |
max_length=max_length, | |
padding_strategy=padding_strategy, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_attention_mask=return_attention_mask, | |
) | |
for key, value in outputs.items(): | |
if key not in batch_outputs: | |
batch_outputs[key] = [] | |
batch_outputs[key].append(value) | |
return BatchEncoding(batch_outputs, tensor_type=return_tensors) | |
def _pad( | |
self, | |
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], | |
max_length: Optional[int] = None, | |
padding_strategy: PaddingStrategy = PaddingStrategy.LONGEST, | |
pad_to_multiple_of: Optional[int] = None, | |
return_attention_mask: Optional[bool] = True, | |
) -> dict: | |
""" | |
Pad encoded inputs (on left/right and up to predefined length or max length in the batch) | |
Args: | |
encoded_inputs: Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). | |
max_length: maximum length of the returned list and optionally padding length (see below). | |
Will truncate by taking into account the special tokens. | |
padding_strategy: PaddingStrategy to use for padding. | |
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch | |
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default) | |
- PaddingStrategy.DO_NOT_PAD: Do not pad | |
The tokenizer padding sides are defined in self.padding_side: | |
- 'left': pads on the left of the sequences | |
- 'right': pads on the right of the sequences | |
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. | |
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability | |
>= 7.5 (Volta). | |
return_attention_mask: (optional) Set to False to avoid returning attention mask (default: set to model specifics) | |
""" | |
# Load from model defaults | |
if return_attention_mask is None: | |
return_attention_mask = "attention_mask" in self.model_input_names | |
required_input = encoded_inputs[self.model_input_names[0]] | |
if padding_strategy == PaddingStrategy.LONGEST: | |
max_length = len(required_input) | |
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): | |
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of | |
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length | |
if needs_to_be_padded: | |
difference = max_length - len(required_input) | |
if self.padding_side == "right": | |
if return_attention_mask: | |
encoded_inputs["attention_mask"] = [1] * len(required_input) + [0] * difference | |
if "token_type_ids" in encoded_inputs: | |
encoded_inputs["token_type_ids"] = ( | |
encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference | |
) | |
if "special_tokens_mask" in encoded_inputs: | |
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference | |
encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference | |
encoded_inputs["labels"] = encoded_inputs["labels"] + [-100] * difference | |
elif self.padding_side == "left": | |
if return_attention_mask: | |
encoded_inputs["attention_mask"] = [0] * difference + [1] * len(required_input) | |
if "token_type_ids" in encoded_inputs: | |
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[ | |
"token_type_ids" | |
] | |
if "special_tokens_mask" in encoded_inputs: | |
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] | |
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input | |
encoded_inputs["labels"] = [-100] * difference + encoded_inputs["labels"] | |
else: | |
raise ValueError("Invalid padding strategy:" + str(self.padding_side)) | |
elif return_attention_mask and "attention_mask" not in encoded_inputs: | |
encoded_inputs["attention_mask"] = [1] * len(required_input) | |
# check_output_once(encoded_inputs) | |
return encoded_inputs | |
def get_special_tokens_mask( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False | |
) -> List[int]: | |
""" | |
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding | |
special tokens using the tokenizer ``prepare_for_model`` or ``encode_plus`` methods. | |
Args: | |
token_ids_0 (:obj:`List[int]`): | |
List of ids of the first sequence. | |
token_ids_1 (:obj:`List[int]`, `optional`): | |
List of ids of the second sequence. | |
already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
Whether or not the token list is already formatted with special tokens for the model. | |
Returns: | |
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | |
""" | |
assert already_has_special_tokens and token_ids_1 is None, ( | |
"You cannot use ``already_has_special_tokens=False`` with this tokenizer. " | |
"Please use a slow (full python) tokenizer to activate this argument." | |
"Or set `return_special_tokens_mask=True` when calling the encoding method " | |
"to get the special tokens mask in any tokenizer. " | |
) | |
all_special_ids = self.all_special_ids # cache the property | |
special_tokens_mask = [1 if token in all_special_ids else 0 for token in token_ids_0] | |
return special_tokens_mask | |
def convert_tokens_to_ids(self, tokens: Union[str, List[str]]) -> Union[int, List[int]]: | |
""" | |
Converts a token string (or a sequence of tokens) in a single integer id (or a sequence of ids), using the | |
vocabulary. | |
Args: | |
tokens (:obj:`str` or :obj:`List[str]`): One or several token(s) to convert to token id(s). | |
Returns: | |
:obj:`int` or :obj:`List[int]`: The token id or list of token ids. | |
""" | |
if tokens is None: | |
return None | |
if isinstance(tokens, str): | |
return self._convert_token_to_id_with_added_voc(tokens) | |
ids = [] | |
for token in tokens: | |
ids.append(self._convert_token_to_id_with_added_voc(token)) | |
return ids | |
def _convert_token_to_id_with_added_voc(self, token): | |
if token is None: | |
return None | |
return token_dictionary.get(token) | |
def __len__(self): | |
return len(token_dictionary) | |
# collator functions | |
class DataCollatorForGeneClassification(DataCollatorForTokenClassification): | |
""" | |
Data collator that will dynamically pad the inputs received, as well as the labels. | |
Args: | |
tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`): | |
The tokenizer used for encoding the data. | |
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): | |
Select a strategy to pad the returned sequences (according to the model's padding side and padding index) | |
among: | |
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single | |
sequence if provided). | |
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the | |
maximum acceptable input length for the model if that argument is not provided. | |
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of | |
different lengths). | |
max_length (:obj:`int`, `optional`): | |
Maximum length of the returned list and optionally padding length (see above). | |
pad_to_multiple_of (:obj:`int`, `optional`): | |
If set will pad the sequence to a multiple of the provided value. | |
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= | |
7.5 (Volta). | |
label_pad_token_id (:obj:`int`, `optional`, defaults to -100): | |
The id to use when padding the labels (-100 will be automatically ignore by PyTorch loss functions). | |
""" | |
tokenizer: PrecollatorForGeneClassification() | |
padding: Union[bool, str, PaddingStrategy] = True | |
max_length: Optional[int] = None | |
pad_to_multiple_of: Optional[int] = None | |
label_pad_token_id: int = -100 | |
def __call__(self, features): | |
label_name = "label" if "label" in features[0].keys() else "labels" | |
labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None | |
batch = self.tokenizer.pad( | |
features, | |
padding=self.padding, | |
max_length=self.max_length, | |
pad_to_multiple_of=self.pad_to_multiple_of, | |
return_tensors="pt", | |
) | |
batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()} | |
return batch |