|
""" |
|
Geneformer embedding extractor. |
|
|
|
**Description:** |
|
|
|
| Extracts gene or cell embeddings. |
|
| Plots cell embeddings as heatmaps or UMAPs. |
|
| Generates cell state embedding dictionary for use with InSilicoPerturber. |
|
|
|
""" |
|
|
|
|
|
import logging |
|
import pickle |
|
from collections import Counter |
|
from pathlib import Path |
|
|
|
import anndata |
|
import matplotlib.pyplot as plt |
|
import pandas as pd |
|
import scanpy as sc |
|
import seaborn as sns |
|
import torch |
|
from tdigest import TDigest |
|
from tqdm.auto import trange |
|
|
|
from . import perturber_utils as pu |
|
from .tokenizer import TOKEN_DICTIONARY_FILE |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
def get_embs( |
|
model, |
|
filtered_input_data, |
|
emb_mode, |
|
layer_to_quant, |
|
pad_token_id, |
|
forward_batch_size, |
|
token_gene_dict, |
|
special_token=False, |
|
summary_stat=None, |
|
silent=False, |
|
): |
|
model_input_size = pu.get_model_input_size(model) |
|
total_batch_length = len(filtered_input_data) |
|
|
|
if summary_stat is None: |
|
embs_list = [] |
|
elif summary_stat is not None: |
|
|
|
emb_dims = pu.get_model_emb_dims(model) |
|
if emb_mode == "cell": |
|
|
|
embs_tdigests = [TDigest() for _ in range(emb_dims)] |
|
if emb_mode == "gene": |
|
gene_set = list( |
|
{ |
|
element |
|
for sublist in filtered_input_data["input_ids"] |
|
for element in sublist |
|
} |
|
) |
|
|
|
embs_tdigests_dict = { |
|
k: [TDigest() for _ in range(emb_dims)] for k in gene_set |
|
} |
|
|
|
|
|
cls_present = any("<cls>" in value for value in token_gene_dict.values()) |
|
eos_present = any("<eos>" in value for value in token_gene_dict.values()) |
|
if emb_mode == "cls": |
|
assert cls_present, "<cls> token missing in token dictionary" |
|
|
|
gene_token_dict = {v:k for k,v in token_gene_dict.items()} |
|
cls_token_id = gene_token_dict["<cls>"] |
|
assert filtered_input_data["input_ids"][0][0] == cls_token_id, "First token is not <cls> token value" |
|
elif emb_mode == "cell": |
|
if cls_present: |
|
logger.warning("CLS token present in token dictionary, excluding from average.") |
|
if eos_present: |
|
logger.warning("EOS token present in token dictionary, excluding from average.") |
|
|
|
overall_max_len = 0 |
|
|
|
for i in trange(0, total_batch_length, forward_batch_size, leave=(not silent)): |
|
max_range = min(i + forward_batch_size, total_batch_length) |
|
|
|
minibatch = filtered_input_data.select([i for i in range(i, max_range)]) |
|
|
|
max_len = int(max(minibatch["length"])) |
|
original_lens = torch.tensor(minibatch["length"], device="cuda") |
|
minibatch.set_format(type="torch") |
|
|
|
input_data_minibatch = minibatch["input_ids"] |
|
input_data_minibatch = pu.pad_tensor_list( |
|
input_data_minibatch, max_len, pad_token_id, model_input_size |
|
) |
|
|
|
with torch.no_grad(): |
|
outputs = model( |
|
input_ids=input_data_minibatch.to("cuda"), |
|
attention_mask=pu.gen_attention_mask(minibatch), |
|
) |
|
|
|
embs_i = outputs.hidden_states[layer_to_quant] |
|
|
|
if emb_mode == "cell": |
|
if cls_present: |
|
non_cls_embs = embs_i[:, 1:, :] |
|
if eos_present: |
|
mean_embs = pu.mean_nonpadding_embs(non_cls_embs, original_lens - 2) |
|
else: |
|
mean_embs = pu.mean_nonpadding_embs(non_cls_embs, original_lens - 1) |
|
else: |
|
mean_embs = pu.mean_nonpadding_embs(embs_i, original_lens) |
|
if summary_stat is None: |
|
embs_list.append(mean_embs) |
|
elif summary_stat is not None: |
|
|
|
accumulate_tdigests(embs_tdigests, mean_embs, emb_dims) |
|
del mean_embs |
|
elif emb_mode == "gene": |
|
if summary_stat is None: |
|
embs_list.append(embs_i) |
|
elif summary_stat is not None: |
|
for h in trange(len(minibatch)): |
|
length_h = minibatch[h]["length"] |
|
input_ids_h = minibatch[h]["input_ids"][0:length_h] |
|
|
|
|
|
embs_i_dim = embs_i.dim() |
|
if embs_i_dim != 3: |
|
logger.error( |
|
f"Embedding tensor should have 3 dimensions, not {embs_i_dim}" |
|
) |
|
raise |
|
|
|
embs_h = embs_i[h, :, :].unsqueeze(dim=1) |
|
dict_h = dict(zip(input_ids_h, embs_h)) |
|
for k in dict_h.keys(): |
|
accumulate_tdigests( |
|
embs_tdigests_dict[int(k)], dict_h[k], emb_dims |
|
) |
|
del embs_h |
|
del dict_h |
|
elif emb_mode == "cls": |
|
cls_embs = embs_i[:,0,:].clone().detach() |
|
embs_list.append(cls_embs) |
|
del cls_embs |
|
|
|
overall_max_len = max(overall_max_len, max_len) |
|
del outputs |
|
del minibatch |
|
del input_data_minibatch |
|
del embs_i |
|
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
if summary_stat is None: |
|
if (emb_mode == "cell") or (emb_mode == "cls"): |
|
embs_stack = torch.cat(embs_list, dim=0) |
|
elif emb_mode == "gene": |
|
embs_stack = pu.pad_tensor_list( |
|
embs_list, |
|
overall_max_len, |
|
pad_token_id, |
|
model_input_size, |
|
1, |
|
pu.pad_3d_tensor, |
|
) |
|
|
|
|
|
elif summary_stat is not None: |
|
if emb_mode == "cell": |
|
if summary_stat == "mean": |
|
summary_emb_list = tdigest_mean(embs_tdigests, emb_dims) |
|
elif summary_stat == "median": |
|
summary_emb_list = tdigest_median(embs_tdigests, emb_dims) |
|
embs_stack = torch.tensor(summary_emb_list) |
|
elif emb_mode == "gene": |
|
if summary_stat == "mean": |
|
[ |
|
update_tdigest_dict_mean(embs_tdigests_dict, gene, emb_dims) |
|
for gene in embs_tdigests_dict.keys() |
|
] |
|
elif summary_stat == "median": |
|
[ |
|
update_tdigest_dict_median(embs_tdigests_dict, gene, emb_dims) |
|
for gene in embs_tdigests_dict.keys() |
|
] |
|
return embs_tdigests_dict |
|
|
|
return embs_stack |
|
|
|
|
|
def accumulate_tdigests(embs_tdigests, mean_embs, emb_dims): |
|
|
|
[ |
|
embs_tdigests[j].update(mean_embs[i, j].item()) |
|
for i in range(mean_embs.size(0)) |
|
for j in range(emb_dims) |
|
] |
|
|
|
def update_tdigest_dict(embs_tdigests_dict, gene, gene_embs, emb_dims): |
|
embs_tdigests_dict[gene] = accumulate_tdigests( |
|
embs_tdigests_dict[gene], gene_embs, emb_dims |
|
) |
|
|
|
|
|
def update_tdigest_dict_mean(embs_tdigests_dict, gene, emb_dims): |
|
embs_tdigests_dict[gene] = tdigest_mean(embs_tdigests_dict[gene], emb_dims) |
|
|
|
|
|
def update_tdigest_dict_median(embs_tdigests_dict, gene, emb_dims): |
|
embs_tdigests_dict[gene] = tdigest_median(embs_tdigests_dict[gene], emb_dims) |
|
|
|
|
|
def summarize_gene_embs(h, minibatch, embs_i, embs_tdigests_dict, emb_dims): |
|
length_h = minibatch[h]["length"] |
|
input_ids_h = minibatch[h]["input_ids"][0:length_h] |
|
embs_h = embs_i[h, :, :].unsqueeze(dim=1) |
|
dict_h = dict(zip(input_ids_h, embs_h)) |
|
[ |
|
update_tdigest_dict(embs_tdigests_dict, k, dict_h[k], emb_dims) |
|
for k in dict_h.keys() |
|
] |
|
|
|
|
|
def tdigest_mean(embs_tdigests, emb_dims): |
|
return [embs_tdigests[i].trimmed_mean(0, 100) for i in range(emb_dims)] |
|
|
|
|
|
def tdigest_median(embs_tdigests, emb_dims): |
|
return [embs_tdigests[i].percentile(50) for i in range(emb_dims)] |
|
|
|
|
|
def label_cell_embs(embs, downsampled_data, emb_labels): |
|
embs_df = pd.DataFrame(embs.cpu().numpy()) |
|
if emb_labels is not None: |
|
for label in emb_labels: |
|
emb_label = downsampled_data[label] |
|
embs_df[label] = emb_label |
|
return embs_df |
|
|
|
|
|
def label_gene_embs(embs, downsampled_data, token_gene_dict): |
|
gene_set = { |
|
element for sublist in downsampled_data["input_ids"] for element in sublist |
|
} |
|
gene_emb_dict = {k: [] for k in gene_set} |
|
for i in range(embs.size()[0]): |
|
length = downsampled_data[i]["length"] |
|
dict_i = dict( |
|
zip( |
|
downsampled_data[i]["input_ids"][0:length], |
|
embs[i, :, :].unsqueeze(dim=1), |
|
) |
|
) |
|
for k in dict_i.keys(): |
|
gene_emb_dict[k].append(dict_i[k]) |
|
for k in gene_emb_dict.keys(): |
|
gene_emb_dict[k] = ( |
|
torch.squeeze(torch.mean(torch.stack(gene_emb_dict[k]), dim=0), dim=0) |
|
.cpu() |
|
.numpy() |
|
) |
|
embs_df = pd.DataFrame(gene_emb_dict).T |
|
embs_df.index = [token_gene_dict[token] for token in embs_df.index] |
|
return embs_df |
|
|
|
|
|
def plot_umap(embs_df, emb_dims, label, output_file, kwargs_dict): |
|
only_embs_df = embs_df.iloc[:, :emb_dims] |
|
only_embs_df.index = pd.RangeIndex(0, only_embs_df.shape[0], name=None).astype(str) |
|
only_embs_df.columns = pd.RangeIndex(0, only_embs_df.shape[1], name=None).astype( |
|
str |
|
) |
|
vars_dict = {"embs": only_embs_df.columns} |
|
obs_dict = {"cell_id": list(only_embs_df.index), f"{label}": list(embs_df[label])} |
|
adata = anndata.AnnData(X=only_embs_df, obs=obs_dict, var=vars_dict) |
|
sc.tl.pca(adata, svd_solver="arpack") |
|
sc.pp.neighbors(adata) |
|
sc.tl.umap(adata) |
|
sns.set(rc={"figure.figsize": (10, 10)}, font_scale=2.3) |
|
sns.set_style("white") |
|
default_kwargs_dict = {"palette": "Set2", "size": 200} |
|
if kwargs_dict is not None: |
|
default_kwargs_dict.update(kwargs_dict) |
|
|
|
with plt.rc_context(): |
|
sc.pl.umap(adata, color=label, **default_kwargs_dict) |
|
plt.savefig(output_file, bbox_inches="tight") |
|
|
|
|
|
def gen_heatmap_class_colors(labels, df): |
|
pal = sns.cubehelix_palette( |
|
len(Counter(labels).keys()), |
|
light=0.9, |
|
dark=0.1, |
|
hue=1, |
|
reverse=True, |
|
start=1, |
|
rot=-2, |
|
) |
|
lut = dict(zip(map(str, Counter(labels).keys()), pal)) |
|
colors = pd.Series(labels, index=df.index).map(lut) |
|
return colors |
|
|
|
|
|
def gen_heatmap_class_dict(classes, label_colors_series): |
|
class_color_dict_df = pd.DataFrame( |
|
{"classes": classes, "color": label_colors_series} |
|
) |
|
class_color_dict_df = class_color_dict_df.drop_duplicates(subset=["classes"]) |
|
return dict(zip(class_color_dict_df["classes"], class_color_dict_df["color"])) |
|
|
|
|
|
def make_colorbar(embs_df, label): |
|
labels = list(embs_df[label]) |
|
|
|
cell_type_colors = gen_heatmap_class_colors(labels, embs_df) |
|
label_colors = pd.DataFrame(cell_type_colors, columns=[label]) |
|
|
|
|
|
label_color_dict = gen_heatmap_class_dict(labels, label_colors[label]) |
|
return label_colors, label_color_dict |
|
|
|
|
|
def plot_heatmap(embs_df, emb_dims, label, output_file, kwargs_dict): |
|
sns.set_style("white") |
|
sns.set(font_scale=2) |
|
plt.figure(figsize=(15, 15), dpi=150) |
|
label_colors, label_color_dict = make_colorbar(embs_df, label) |
|
|
|
default_kwargs_dict = { |
|
"row_cluster": True, |
|
"col_cluster": True, |
|
"row_colors": label_colors, |
|
"standard_scale": 1, |
|
"linewidths": 0, |
|
"xticklabels": False, |
|
"yticklabels": False, |
|
"figsize": (15, 15), |
|
"center": 0, |
|
"cmap": "magma", |
|
} |
|
|
|
if kwargs_dict is not None: |
|
default_kwargs_dict.update(kwargs_dict) |
|
g = sns.clustermap( |
|
embs_df.iloc[:, 0:emb_dims].apply(pd.to_numeric), **default_kwargs_dict |
|
) |
|
|
|
plt.setp(g.ax_row_colors.get_xmajorticklabels(), rotation=45, ha="right") |
|
|
|
for label_color in list(label_color_dict.keys()): |
|
g.ax_col_dendrogram.bar( |
|
0, 0, color=label_color_dict[label_color], label=label_color, linewidth=0 |
|
) |
|
|
|
g.ax_col_dendrogram.legend( |
|
title=f"{label}", |
|
loc="lower center", |
|
ncol=4, |
|
bbox_to_anchor=(0.5, 1), |
|
facecolor="white", |
|
) |
|
plt.show() |
|
logger.info(f"Output file: {output_file}") |
|
plt.savefig(output_file, bbox_inches="tight") |
|
|
|
|
|
class EmbExtractor: |
|
valid_option_dict = { |
|
"model_type": {"Pretrained", "GeneClassifier", "CellClassifier"}, |
|
"num_classes": {int}, |
|
"emb_mode": {"cls", "cell", "gene"}, |
|
"cell_emb_style": {"mean_pool"}, |
|
"gene_emb_style": {"mean_pool"}, |
|
"filter_data": {None, dict}, |
|
"max_ncells": {None, int}, |
|
"emb_layer": {-1, 0}, |
|
"emb_label": {None, list}, |
|
"labels_to_plot": {None, list}, |
|
"forward_batch_size": {int}, |
|
"token_dictionary_file" : {None, str}, |
|
"nproc": {int}, |
|
"summary_stat": {None, "mean", "median", "exact_mean", "exact_median"}, |
|
} |
|
|
|
def __init__( |
|
self, |
|
model_type="Pretrained", |
|
num_classes=0, |
|
emb_mode="cell", |
|
cell_emb_style="mean_pool", |
|
gene_emb_style="mean_pool", |
|
filter_data=None, |
|
max_ncells=1000, |
|
emb_layer=-1, |
|
emb_label=None, |
|
labels_to_plot=None, |
|
forward_batch_size=100, |
|
nproc=4, |
|
summary_stat=None, |
|
token_dictionary_file=None, |
|
): |
|
""" |
|
Initialize embedding extractor. |
|
|
|
**Parameters:** |
|
|
|
model_type : {"Pretrained", "GeneClassifier", "CellClassifier"} |
|
| Whether model is the pretrained Geneformer or a fine-tuned gene or cell classifier. |
|
num_classes : int |
|
| If model is a gene or cell classifier, specify number of classes it was trained to classify. |
|
| For the pretrained Geneformer model, number of classes is 0 as it is not a classifier. |
|
emb_mode : {"cls", "cell", "gene"} |
|
| Whether to output CLS, cell, or gene embeddings. |
|
| CLS embeddings are cell embeddings derived from the CLS token in the front of the rank value encoding. |
|
cell_emb_style : {"mean_pool"} |
|
| Method for summarizing cell embeddings if not using CLS token. |
|
| Currently only option is mean pooling of gene embeddings for given cell. |
|
gene_emb_style : "mean_pool" |
|
| Method for summarizing gene embeddings. |
|
| Currently only option is mean pooling of contextual gene embeddings for given gene. |
|
filter_data : None, dict |
|
| Default is to extract embeddings from all input data. |
|
| Otherwise, dictionary specifying .dataset column name and list of values to filter by. |
|
max_ncells : None, int |
|
| Maximum number of cells to extract embeddings from. |
|
| Default is 1000 cells randomly sampled from input data. |
|
| If None, will extract embeddings from all cells. |
|
emb_layer : {-1, 0} |
|
| Embedding layer to extract. |
|
| The last layer is most specifically weighted to optimize the given learning objective. |
|
| Generally, it is best to extract the 2nd to last layer to get a more general representation. |
|
| -1: 2nd to last layer |
|
| 0: last layer |
|
emb_label : None, list |
|
| List of column name(s) in .dataset to add as labels to embedding output. |
|
labels_to_plot : None, list |
|
| Cell labels to plot. |
|
| Shown as color bar in heatmap. |
|
| Shown as cell color in umap. |
|
| Plotting umap requires labels to plot. |
|
forward_batch_size : int |
|
| Batch size for forward pass. |
|
nproc : int |
|
| Number of CPU processes to use. |
|
summary_stat : {None, "mean", "median", "exact_mean", "exact_median"} |
|
| If exact_mean or exact_median, outputs only exact mean or median embedding of input data. |
|
| If mean or median, outputs only approximated mean or median embedding of input data. |
|
| Non-exact recommended if encountering memory constraints while generating goal embedding positions. |
|
| Non-exact is slower but more memory-efficient. |
|
token_dictionary_file : Path |
|
| Default is the Geneformer token dictionary |
|
| Path to pickle file containing token dictionary (Ensembl ID:token). |
|
|
|
**Examples:** |
|
|
|
.. code-block :: python |
|
|
|
>>> from geneformer import EmbExtractor |
|
>>> embex = EmbExtractor(model_type="CellClassifier", |
|
... num_classes=3, |
|
... emb_mode="cell", |
|
... filter_data={"cell_type":["cardiomyocyte"]}, |
|
... max_ncells=1000, |
|
... max_ncells_to_plot=1000, |
|
... emb_layer=-1, |
|
... emb_label=["disease", "cell_type"], |
|
... labels_to_plot=["disease", "cell_type"]) |
|
|
|
""" |
|
|
|
self.model_type = model_type |
|
self.num_classes = num_classes |
|
self.emb_mode = emb_mode |
|
self.cell_emb_style = cell_emb_style |
|
self.gene_emb_style = gene_emb_style |
|
self.filter_data = filter_data |
|
self.max_ncells = max_ncells |
|
self.emb_layer = emb_layer |
|
self.emb_label = emb_label |
|
self.labels_to_plot = labels_to_plot |
|
self.token_dictionary_file = token_dictionary_file |
|
self.forward_batch_size = forward_batch_size |
|
self.nproc = nproc |
|
if (summary_stat is not None) and ("exact" in summary_stat): |
|
self.summary_stat = None |
|
self.exact_summary_stat = summary_stat |
|
else: |
|
self.summary_stat = summary_stat |
|
self.exact_summary_stat = None |
|
|
|
self.validate_options() |
|
|
|
|
|
if self.token_dictionary_file is None: |
|
token_dictionary_file = TOKEN_DICTIONARY_FILE |
|
with open(token_dictionary_file, "rb") as f: |
|
self.gene_token_dict = pickle.load(f) |
|
|
|
self.token_gene_dict = {v: k for k, v in self.gene_token_dict.items()} |
|
self.pad_token_id = self.gene_token_dict.get("<pad>") |
|
|
|
def validate_options(self): |
|
|
|
for attr_name, valid_options in self.valid_option_dict.items(): |
|
attr_value = self.__dict__[attr_name] |
|
if not isinstance(attr_value, (list, dict)): |
|
if attr_value in valid_options: |
|
continue |
|
valid_type = False |
|
for option in valid_options: |
|
if (option in [int, list, dict, bool, str]) and isinstance( |
|
attr_value, option |
|
): |
|
valid_type = True |
|
break |
|
if valid_type: |
|
continue |
|
logger.error( |
|
f"Invalid option for {attr_name}. " |
|
f"Valid options for {attr_name}: {valid_options}" |
|
) |
|
raise |
|
|
|
if self.filter_data is not None: |
|
for key, value in self.filter_data.items(): |
|
if not isinstance(value, list): |
|
self.filter_data[key] = [value] |
|
logger.warning( |
|
"Values in filter_data dict must be lists. " |
|
f"Changing {key} value to list ([{value}])." |
|
) |
|
|
|
def extract_embs( |
|
self, |
|
model_directory, |
|
input_data_file, |
|
output_directory, |
|
output_prefix, |
|
output_torch_embs=False, |
|
cell_state=None, |
|
): |
|
""" |
|
Extract embeddings from input data and save as results in output_directory. |
|
|
|
**Parameters:** |
|
|
|
model_directory : Path |
|
| Path to directory containing model |
|
input_data_file : Path |
|
| Path to directory containing .dataset inputs |
|
output_directory : Path |
|
| Path to directory where embedding data will be saved as csv |
|
output_prefix : str |
|
| Prefix for output file |
|
output_torch_embs : bool |
|
| Whether or not to also output the embeddings as a tensor. |
|
| Note, if true, will output embeddings as both dataframe and tensor. |
|
cell_state : dict |
|
| Cell state key and value for state embedding extraction. |
|
|
|
**Examples:** |
|
|
|
.. code-block :: python |
|
|
|
>>> embs = embex.extract_embs("path/to/model", |
|
... "path/to/input_data", |
|
... "path/to/output_directory", |
|
... "output_prefix") |
|
|
|
""" |
|
|
|
filtered_input_data = pu.load_and_filter( |
|
self.filter_data, self.nproc, input_data_file |
|
) |
|
if cell_state is not None: |
|
filtered_input_data = pu.filter_by_dict( |
|
filtered_input_data, cell_state, self.nproc |
|
) |
|
downsampled_data = pu.downsample_and_sort(filtered_input_data, self.max_ncells) |
|
model = pu.load_model( |
|
self.model_type, self.num_classes, model_directory, mode="eval" |
|
) |
|
layer_to_quant = pu.quant_layers(model) + self.emb_layer |
|
embs = get_embs( |
|
model=model, |
|
filtered_input_data=downsampled_data, |
|
emb_mode=self.emb_mode, |
|
layer_to_quant=layer_to_quant, |
|
pad_token_id=self.pad_token_id, |
|
forward_batch_size=self.forward_batch_size, |
|
token_gene_dict=self.token_gene_dict, |
|
summary_stat=self.summary_stat, |
|
) |
|
|
|
if self.emb_mode == "cell": |
|
if self.summary_stat is None: |
|
embs_df = label_cell_embs(embs, downsampled_data, self.emb_label) |
|
elif self.summary_stat is not None: |
|
embs_df = pd.DataFrame(embs.cpu().numpy()).T |
|
elif self.emb_mode == "gene": |
|
if self.summary_stat is None: |
|
embs_df = label_gene_embs(embs, downsampled_data, self.token_gene_dict) |
|
elif self.summary_stat is not None: |
|
embs_df = pd.DataFrame(embs).T |
|
embs_df.index = [self.token_gene_dict[token] for token in embs_df.index] |
|
elif self.emb_mode == "cls": |
|
embs_df = label_cell_embs(embs, downsampled_data, self.emb_label) |
|
|
|
|
|
if cell_state is None: |
|
output_path = (Path(output_directory) / output_prefix).with_suffix(".csv") |
|
embs_df.to_csv(output_path) |
|
|
|
if self.exact_summary_stat == "exact_mean": |
|
embs = embs.mean(dim=0) |
|
emb_dims = pu.get_model_embedding_dimensions(model) |
|
embs_df = pd.DataFrame( |
|
embs_df[0:emb_dims-1].mean(axis="rows"), columns=[self.exact_summary_stat] |
|
).T |
|
elif self.exact_summary_stat == "exact_median": |
|
embs = torch.median(embs, dim=0)[0] |
|
emb_dims = pu.get_model_embedding_dimensions(model) |
|
embs_df = pd.DataFrame( |
|
embs_df[0:emb_dims-1].median(axis="rows"), columns=[self.exact_summary_stat] |
|
).T |
|
|
|
if cell_state is not None: |
|
return embs |
|
else: |
|
if output_torch_embs: |
|
return embs_df, embs |
|
else: |
|
return embs_df |
|
|
|
def get_state_embs( |
|
self, |
|
cell_states_to_model, |
|
model_directory, |
|
input_data_file, |
|
output_directory, |
|
output_prefix, |
|
output_torch_embs=True, |
|
): |
|
""" |
|
Extract exact mean or exact median cell state embedding positions from input data and save as results in output_directory. |
|
|
|
**Parameters:** |
|
|
|
cell_states_to_model : None, dict |
|
| Cell states to model if testing perturbations that achieve goal state change. |
|
| Four-item dictionary with keys: state_key, start_state, goal_state, and alt_states |
|
| state_key: key specifying name of column in .dataset that defines the start/goal states |
|
| start_state: value in the state_key column that specifies the start state |
|
| goal_state: value in the state_key column taht specifies the goal end state |
|
| alt_states: list of values in the state_key column that specify the alternate end states |
|
| For example: |
|
| {"state_key": "disease", |
|
| "start_state": "dcm", |
|
| "goal_state": "nf", |
|
| "alt_states": ["hcm", "other1", "other2"]} |
|
model_directory : Path |
|
| Path to directory containing model |
|
input_data_file : Path |
|
| Path to directory containing .dataset inputs |
|
output_directory : Path |
|
| Path to directory where embedding data will be saved as csv |
|
output_prefix : str |
|
| Prefix for output file |
|
output_torch_embs : bool |
|
| Whether or not to also output the embeddings as a tensor. |
|
| Note, if true, will output embeddings as both dataframe and tensor. |
|
|
|
**Outputs** |
|
|
|
| Outputs state_embs_dict for use with in silico perturber. |
|
| Format is dictionary of embedding positions of each cell state to model shifts from/towards. |
|
| Keys specify each possible cell state to model. |
|
| Values are target embedding positions as torch.tensor. |
|
| For example: |
|
| {"nf": emb_nf, |
|
| "hcm": emb_hcm, |
|
| "dcm": emb_dcm, |
|
| "other1": emb_other1, |
|
| "other2": emb_other2} |
|
""" |
|
|
|
pu.validate_cell_states_to_model(cell_states_to_model) |
|
valid_summary_stats = ["exact_mean", "exact_median"] |
|
if self.exact_summary_stat not in valid_summary_stats: |
|
logger.error( |
|
"For extracting state embs, summary_stat in EmbExtractor " |
|
f"must be set to option in {valid_summary_stats}" |
|
) |
|
raise |
|
|
|
state_embs_dict = dict() |
|
state_key = cell_states_to_model["state_key"] |
|
for k, v in cell_states_to_model.items(): |
|
if k == "state_key": |
|
continue |
|
elif (k == "start_state") or (k == "goal_state"): |
|
state_embs_dict[v] = self.extract_embs( |
|
model_directory, |
|
input_data_file, |
|
output_directory, |
|
output_prefix, |
|
output_torch_embs, |
|
cell_state={state_key: v}, |
|
) |
|
else: |
|
for alt_state in v: |
|
state_embs_dict[alt_state] = self.extract_embs( |
|
model_directory, |
|
input_data_file, |
|
output_directory, |
|
output_prefix, |
|
output_torch_embs, |
|
cell_state={state_key: alt_state}, |
|
) |
|
|
|
output_path = (Path(output_directory) / output_prefix).with_suffix(".pkl") |
|
with open(output_path, "wb") as fp: |
|
pickle.dump(state_embs_dict, fp) |
|
|
|
return state_embs_dict |
|
|
|
def plot_embs( |
|
self, |
|
embs, |
|
plot_style, |
|
output_directory, |
|
output_prefix, |
|
max_ncells_to_plot=1000, |
|
kwargs_dict=None, |
|
): |
|
""" |
|
Plot embeddings, coloring by provided labels. |
|
|
|
**Parameters:** |
|
|
|
embs : pandas.core.frame.DataFrame |
|
| Pandas dataframe containing embeddings output from extract_embs |
|
plot_style : str |
|
| Style of plot: "heatmap" or "umap" |
|
output_directory : Path |
|
| Path to directory where plots will be saved as pdf |
|
output_prefix : str |
|
| Prefix for output file |
|
max_ncells_to_plot : None, int |
|
| Maximum number of cells to plot. |
|
| Default is 1000 cells randomly sampled from embeddings. |
|
| If None, will plot embeddings from all cells. |
|
kwargs_dict : dict |
|
| Dictionary of kwargs to pass to plotting function. |
|
|
|
**Examples:** |
|
|
|
.. code-block :: python |
|
|
|
>>> embex.plot_embs(embs=embs, |
|
... plot_style="heatmap", |
|
... output_directory="path/to/output_directory", |
|
... output_prefix="output_prefix") |
|
|
|
""" |
|
|
|
if plot_style not in ["heatmap", "umap"]: |
|
logger.error( |
|
"Invalid option for 'plot_style'. " "Valid options: {'heatmap','umap'}" |
|
) |
|
raise |
|
|
|
if (plot_style == "umap") and (self.labels_to_plot is None): |
|
logger.error("Plotting UMAP requires 'labels_to_plot'. ") |
|
raise |
|
|
|
if max_ncells_to_plot > self.max_ncells: |
|
max_ncells_to_plot = self.max_ncells |
|
logger.warning( |
|
"max_ncells_to_plot must be <= max_ncells. " |
|
f"Changing max_ncells_to_plot to {self.max_ncells}." |
|
) |
|
|
|
if (max_ncells_to_plot is not None) and (max_ncells_to_plot < self.max_ncells): |
|
embs = embs.sample(max_ncells_to_plot, axis=0) |
|
|
|
if self.emb_label is None: |
|
label_len = 0 |
|
else: |
|
label_len = len(self.emb_label) |
|
|
|
emb_dims = embs.shape[1] - label_len |
|
|
|
if self.emb_label is None: |
|
emb_labels = None |
|
else: |
|
emb_labels = embs.columns[emb_dims:] |
|
|
|
if plot_style == "umap": |
|
for label in self.labels_to_plot: |
|
if label not in emb_labels: |
|
logger.warning( |
|
f"Label {label} from labels_to_plot " |
|
f"not present in provided embeddings dataframe." |
|
) |
|
continue |
|
output_prefix_label = output_prefix + f"_umap_{label}" |
|
output_file = ( |
|
Path(output_directory) / output_prefix_label |
|
).with_suffix(".pdf") |
|
plot_umap(embs, emb_dims, label, output_file, kwargs_dict) |
|
|
|
if plot_style == "heatmap": |
|
for label in self.labels_to_plot: |
|
if label not in emb_labels: |
|
logger.warning( |
|
f"Label {label} from labels_to_plot " |
|
f"not present in provided embeddings dataframe." |
|
) |
|
continue |
|
output_prefix_label = output_prefix + f"_heatmap_{label}" |
|
output_file = ( |
|
Path(output_directory) / output_prefix_label |
|
).with_suffix(".pdf") |
|
plot_heatmap(embs, emb_dims, label, output_file, kwargs_dict) |