|
""" |
|
Geneformer in silico perturber stats generator. |
|
|
|
**Usage:** |
|
|
|
.. code-block :: python |
|
|
|
>>> from geneformer import InSilicoPerturberStats |
|
>>> ispstats = InSilicoPerturberStats(mode="goal_state_shift", |
|
... cell_states_to_model={"state_key": "disease", |
|
... "start_state": "dcm", |
|
... "goal_state": "nf", |
|
... "alt_states": ["hcm", "other1", "other2"]}) |
|
>>> ispstats.get_stats("path/to/input_data", |
|
... None, |
|
... "path/to/output_directory", |
|
... "output_prefix") |
|
|
|
**Description:** |
|
|
|
| Aggregates data or calculates stats for in silico perturbations based on type of statistics specified in InSilicoPerturberStats. |
|
| Input data is raw in silico perturbation results in the form of dictionaries outputted by ``in_silico_perturber``. |
|
|
|
""" |
|
|
|
|
|
import logging |
|
import os |
|
import pickle |
|
import random |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import pandas as pd |
|
import statsmodels.stats.multitest as smt |
|
from scipy.stats import ranksums |
|
from sklearn.mixture import GaussianMixture |
|
from tqdm.auto import tqdm, trange |
|
|
|
from .perturber_utils import flatten_list, validate_cell_states_to_model |
|
from . import TOKEN_DICTIONARY_FILE, ENSEMBL_DICTIONARY_FILE |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
def invert_dict(dictionary): |
|
return {v: k for k, v in dictionary.items()} |
|
|
|
|
|
def read_dict(cos_sims_dict, cell_or_gene_emb, anchor_token): |
|
if cell_or_gene_emb == "cell": |
|
cell_emb_dict = { |
|
k: v for k, v in cos_sims_dict.items() if v and "cell_emb" in k |
|
} |
|
return [cell_emb_dict] |
|
elif cell_or_gene_emb == "gene": |
|
if anchor_token is None: |
|
gene_emb_dict = {k: v for k, v in cos_sims_dict.items() if v} |
|
else: |
|
gene_emb_dict = { |
|
k: v for k, v in cos_sims_dict.items() if v and anchor_token == k[0] |
|
} |
|
return [gene_emb_dict] |
|
|
|
|
|
|
|
def read_dictionaries( |
|
input_data_directory, |
|
cell_or_gene_emb, |
|
anchor_token, |
|
cell_states_to_model, |
|
pickle_suffix, |
|
): |
|
file_found = False |
|
file_path_list = [] |
|
if cell_states_to_model is None: |
|
dict_list = [] |
|
else: |
|
validate_cell_states_to_model(cell_states_to_model) |
|
cell_states_to_model_valid = { |
|
state: value |
|
for state, value in cell_states_to_model.items() |
|
if state != "state_key" |
|
and cell_states_to_model[state] is not None |
|
and cell_states_to_model[state] != [] |
|
} |
|
cell_states_list = [] |
|
|
|
for state in cell_states_to_model_valid: |
|
value = cell_states_to_model_valid[state] |
|
if isinstance(value, list): |
|
cell_states_list += value |
|
else: |
|
cell_states_list.append(value) |
|
state_dict = {state_value: dict() for state_value in cell_states_list} |
|
for file in os.listdir(input_data_directory): |
|
|
|
if file.endswith(pickle_suffix): |
|
file_found = True |
|
file_path_list += [f"{input_data_directory}/{file}"] |
|
for file_path in tqdm(file_path_list): |
|
with open(file_path, "rb") as fp: |
|
cos_sims_dict = pickle.load(fp) |
|
if cell_states_to_model is None: |
|
dict_list += read_dict(cos_sims_dict, cell_or_gene_emb, anchor_token) |
|
else: |
|
for state_value in cell_states_list: |
|
new_dict = read_dict( |
|
cos_sims_dict[state_value], cell_or_gene_emb, anchor_token |
|
)[0] |
|
for key in new_dict: |
|
try: |
|
state_dict[state_value][key] += new_dict[key] |
|
except KeyError: |
|
state_dict[state_value][key] = new_dict[key] |
|
if not file_found: |
|
logger.error( |
|
"No raw data for processing found within provided directory. " |
|
"Please ensure data files end with '{pickle_suffix}'." |
|
) |
|
raise |
|
if cell_states_to_model is None: |
|
return dict_list |
|
else: |
|
return state_dict |
|
|
|
|
|
|
|
def get_gene_list(dict_list, mode): |
|
if mode == "cell": |
|
position = 0 |
|
elif mode == "gene": |
|
position = 1 |
|
gene_set = set() |
|
if isinstance(dict_list, list): |
|
for dict_i in dict_list: |
|
gene_set.update([k[position] for k, v in dict_i.items() if v]) |
|
elif isinstance(dict_list, dict): |
|
for state, dict_i in dict_list.items(): |
|
gene_set.update([k[position] for k, v in dict_i.items() if v]) |
|
else: |
|
logger.error( |
|
"dict_list should be a list, or if modeling shift to goal states, a dict. " |
|
f"{type(dict_list)} is not the correct format." |
|
) |
|
raise |
|
gene_list = list(gene_set) |
|
if mode == "gene": |
|
gene_list.remove("cell_emb") |
|
gene_list.sort() |
|
return gene_list |
|
|
|
|
|
def token_tuple_to_ensembl_ids(token_tuple, gene_token_id_dict): |
|
try: |
|
return tuple([gene_token_id_dict.get(i, np.nan) for i in token_tuple]) |
|
except TypeError: |
|
return gene_token_id_dict.get(token_tuple, np.nan) |
|
|
|
|
|
def n_detections(token, dict_list, mode, anchor_token): |
|
cos_sim_megalist = [] |
|
for dict_i in dict_list: |
|
if mode == "cell": |
|
cos_sim_megalist += dict_i.get((token, "cell_emb"), []) |
|
elif mode == "gene": |
|
cos_sim_megalist += dict_i.get((anchor_token, token), []) |
|
return len(cos_sim_megalist) |
|
|
|
|
|
def get_fdr(pvalues): |
|
return list(smt.multipletests(pvalues, alpha=0.05, method="fdr_bh")[1]) |
|
|
|
|
|
def get_impact_component(test_value, gaussian_mixture_model): |
|
impact_border = gaussian_mixture_model.means_[0][0] |
|
nonimpact_border = gaussian_mixture_model.means_[1][0] |
|
if test_value > nonimpact_border: |
|
impact_component = 0 |
|
elif test_value < impact_border: |
|
impact_component = 1 |
|
else: |
|
impact_component_raw = gaussian_mixture_model.predict([[test_value]])[0] |
|
if impact_component_raw == 1: |
|
impact_component = 0 |
|
elif impact_component_raw == 0: |
|
impact_component = 1 |
|
return impact_component |
|
|
|
|
|
|
|
def isp_aggregate_grouped_perturb(cos_sims_df, dict_list, genes_perturbed): |
|
names = ["Cosine_sim", "Gene"] |
|
cos_sims_full_dfs = [] |
|
if isinstance(genes_perturbed,list): |
|
if len(genes_perturbed)>1: |
|
gene_ids_df = cos_sims_df.loc[np.isin([set(idx) for idx in cos_sims_df["Ensembl_ID"]], set(genes_perturbed)), :] |
|
else: |
|
gene_ids_df = cos_sims_df.loc[np.isin(cos_sims_df["Ensembl_ID"], genes_perturbed), :] |
|
else: |
|
logger.error( |
|
"aggregate_data is for perturbation of single gene or single group of genes. genes_to_perturb should be formatted as list." |
|
) |
|
raise |
|
|
|
if gene_ids_df.empty: |
|
logger.error( |
|
"genes_to_perturb not found in data." |
|
) |
|
raise |
|
|
|
tokens = gene_ids_df["Gene"] |
|
symbols = gene_ids_df["Gene_name"] |
|
|
|
for token, symbol in zip(tokens, symbols): |
|
cos_shift_data = [] |
|
for dict_i in dict_list: |
|
cos_shift_data += dict_i.get((token, "cell_emb"), []) |
|
|
|
df = pd.DataFrame(columns=names) |
|
df["Cosine_sim"] = cos_shift_data |
|
df["Gene"] = symbol |
|
cos_sims_full_dfs.append(df) |
|
|
|
return pd.concat(cos_sims_full_dfs) |
|
|
|
|
|
def find(variable, x): |
|
try: |
|
if x in variable: |
|
return True |
|
elif x == variable: |
|
return True |
|
except (ValueError, TypeError): |
|
return x == variable |
|
|
|
|
|
def isp_aggregate_gene_shifts( |
|
cos_sims_df, dict_list, gene_token_id_dict, gene_id_name_dict |
|
): |
|
cos_shift_data = dict() |
|
for i in trange(cos_sims_df.shape[0]): |
|
token = cos_sims_df["Gene"][i] |
|
for dict_i in dict_list: |
|
affected_pairs = [k for k, v in dict_i.items() if find(k[0], token)] |
|
for key in affected_pairs: |
|
if key in cos_shift_data.keys(): |
|
cos_shift_data[key] += dict_i.get(key, []) |
|
else: |
|
cos_shift_data[key] = dict_i.get(key, []) |
|
|
|
cos_data_mean = { |
|
k: [np.mean(v), np.std(v), len(v)] for k, v in cos_shift_data.items() |
|
} |
|
cos_sims_full_df = pd.DataFrame() |
|
cos_sims_full_df["Perturbed"] = [k[0] for k, v in cos_data_mean.items()] |
|
cos_sims_full_df["Gene_name"] = [ |
|
cos_sims_df[cos_sims_df["Gene"] == k[0]]["Gene_name"][0] |
|
for k, v in cos_data_mean.items() |
|
] |
|
cos_sims_full_df["Ensembl_ID"] = [ |
|
cos_sims_df[cos_sims_df["Gene"] == k[0]]["Ensembl_ID"][0] |
|
for k, v in cos_data_mean.items() |
|
] |
|
|
|
cos_sims_full_df["Affected"] = [k[1] for k, v in cos_data_mean.items()] |
|
cos_sims_full_df["Affected_gene_name"] = [ |
|
gene_id_name_dict.get(gene_token_id_dict.get(token, np.nan), np.nan) |
|
for token in cos_sims_full_df["Affected"] |
|
] |
|
cos_sims_full_df["Affected_Ensembl_ID"] = [ |
|
gene_token_id_dict.get(token, np.nan) for token in cos_sims_full_df["Affected"] |
|
] |
|
cos_sims_full_df["Cosine_sim_mean"] = [v[0] for k, v in cos_data_mean.items()] |
|
cos_sims_full_df["Cosine_sim_stdev"] = [v[1] for k, v in cos_data_mean.items()] |
|
cos_sims_full_df["N_Detections"] = [v[2] for k, v in cos_data_mean.items()] |
|
|
|
specific_val = "cell_emb" |
|
cos_sims_full_df["temp"] = list(cos_sims_full_df["Affected"] == specific_val) |
|
|
|
cos_sims_full_df = cos_sims_full_df.sort_values( |
|
by=(["temp", "Cosine_sim_mean"]), ascending=[False, True] |
|
).drop("temp", axis=1) |
|
|
|
return cos_sims_full_df |
|
|
|
|
|
|
|
def isp_stats_to_goal_state( |
|
cos_sims_df, result_dict, cell_states_to_model, genes_perturbed |
|
): |
|
if ( |
|
("alt_states" not in cell_states_to_model.keys()) |
|
or (len(cell_states_to_model["alt_states"]) == 0) |
|
or (cell_states_to_model["alt_states"] == [None]) |
|
): |
|
alt_end_state_exists = False |
|
elif (len(cell_states_to_model["alt_states"]) > 0) and ( |
|
cell_states_to_model["alt_states"] != [None] |
|
): |
|
alt_end_state_exists = True |
|
|
|
|
|
if genes_perturbed != "all": |
|
cos_sims_full_df = pd.DataFrame() |
|
|
|
cos_shift_data_end = [] |
|
token = cos_sims_df["Gene"][0] |
|
cos_shift_data_end += result_dict[cell_states_to_model["goal_state"]].get( |
|
(token, "cell_emb"), [] |
|
) |
|
cos_sims_full_df["Shift_to_goal_end"] = [np.mean(cos_shift_data_end)] |
|
if alt_end_state_exists is True: |
|
for alt_state in cell_states_to_model["alt_states"]: |
|
cos_shift_data_alt_state = [] |
|
cos_shift_data_alt_state += result_dict.get(alt_state).get( |
|
(token, "cell_emb"), [] |
|
) |
|
cos_sims_full_df[f"Shift_to_alt_end_{alt_state}"] = [ |
|
np.mean(cos_shift_data_alt_state) |
|
] |
|
|
|
|
|
cos_sims_full_df = cos_sims_full_df.sort_values( |
|
by=["Shift_to_goal_end"], ascending=[False] |
|
) |
|
return cos_sims_full_df |
|
|
|
elif genes_perturbed == "all": |
|
goal_end_random_megalist = [] |
|
if alt_end_state_exists is True: |
|
alt_end_state_random_dict = { |
|
alt_state: [] for alt_state in cell_states_to_model["alt_states"] |
|
} |
|
for i in trange(cos_sims_df.shape[0]): |
|
token = cos_sims_df["Gene"][i] |
|
goal_end_random_megalist += result_dict[ |
|
cell_states_to_model["goal_state"] |
|
].get((token, "cell_emb"), []) |
|
if alt_end_state_exists is True: |
|
for alt_state in cell_states_to_model["alt_states"]: |
|
alt_end_state_random_dict[alt_state] += result_dict[alt_state].get( |
|
(token, "cell_emb"), [] |
|
) |
|
|
|
|
|
if len(goal_end_random_megalist) > 100_000: |
|
random.seed(42) |
|
goal_end_random_megalist = random.sample( |
|
goal_end_random_megalist, k=100_000 |
|
) |
|
if alt_end_state_exists is True: |
|
for alt_state in cell_states_to_model["alt_states"]: |
|
if len(alt_end_state_random_dict[alt_state]) > 100_000: |
|
random.seed(42) |
|
alt_end_state_random_dict[alt_state] = random.sample( |
|
alt_end_state_random_dict[alt_state], k=100_000 |
|
) |
|
|
|
names = [ |
|
"Gene", |
|
"Gene_name", |
|
"Ensembl_ID", |
|
"Shift_to_goal_end", |
|
"Goal_end_vs_random_pval", |
|
] |
|
if alt_end_state_exists is True: |
|
[ |
|
names.append(f"Shift_to_alt_end_{alt_state}") |
|
for alt_state in cell_states_to_model["alt_states"] |
|
] |
|
names.append(names.pop(names.index("Goal_end_vs_random_pval"))) |
|
[ |
|
names.append(f"Alt_end_vs_random_pval_{alt_state}") |
|
for alt_state in cell_states_to_model["alt_states"] |
|
] |
|
cos_sims_full_df = pd.DataFrame(columns=names) |
|
|
|
n_detections_dict = dict() |
|
for i in trange(cos_sims_df.shape[0]): |
|
token = cos_sims_df["Gene"][i] |
|
name = cos_sims_df["Gene_name"][i] |
|
ensembl_id = cos_sims_df["Ensembl_ID"][i] |
|
goal_end_cos_sim_megalist = result_dict[ |
|
cell_states_to_model["goal_state"] |
|
].get((token, "cell_emb"), []) |
|
n_detections_dict[token] = len(goal_end_cos_sim_megalist) |
|
mean_goal_end = np.mean(goal_end_cos_sim_megalist) |
|
pval_goal_end = ranksums( |
|
goal_end_random_megalist, goal_end_cos_sim_megalist |
|
).pvalue |
|
|
|
if alt_end_state_exists is True: |
|
alt_end_state_dict = { |
|
alt_state: [] for alt_state in cell_states_to_model["alt_states"] |
|
} |
|
for alt_state in cell_states_to_model["alt_states"]: |
|
alt_end_state_dict[alt_state] = result_dict[alt_state].get( |
|
(token, "cell_emb"), [] |
|
) |
|
alt_end_state_dict[f"{alt_state}_mean"] = np.mean( |
|
alt_end_state_dict[alt_state] |
|
) |
|
alt_end_state_dict[f"{alt_state}_pval"] = ranksums( |
|
alt_end_state_random_dict[alt_state], |
|
alt_end_state_dict[alt_state], |
|
).pvalue |
|
|
|
results_dict = dict() |
|
results_dict["Gene"] = token |
|
results_dict["Gene_name"] = name |
|
results_dict["Ensembl_ID"] = ensembl_id |
|
results_dict["Shift_to_goal_end"] = mean_goal_end |
|
results_dict["Goal_end_vs_random_pval"] = pval_goal_end |
|
if alt_end_state_exists is True: |
|
for alt_state in cell_states_to_model["alt_states"]: |
|
results_dict[f"Shift_to_alt_end_{alt_state}"] = alt_end_state_dict[ |
|
f"{alt_state}_mean" |
|
] |
|
results_dict[ |
|
f"Alt_end_vs_random_pval_{alt_state}" |
|
] = alt_end_state_dict[f"{alt_state}_pval"] |
|
|
|
cos_sims_df_i = pd.DataFrame(results_dict, index=[i]) |
|
cos_sims_full_df = pd.concat([cos_sims_full_df, cos_sims_df_i]) |
|
|
|
cos_sims_full_df["Goal_end_FDR"] = get_fdr( |
|
list(cos_sims_full_df["Goal_end_vs_random_pval"]) |
|
) |
|
if alt_end_state_exists is True: |
|
for alt_state in cell_states_to_model["alt_states"]: |
|
cos_sims_full_df[f"Alt_end_FDR_{alt_state}"] = get_fdr( |
|
list(cos_sims_full_df[f"Alt_end_vs_random_pval_{alt_state}"]) |
|
) |
|
|
|
|
|
cos_sims_full_df["N_Detections"] = [ |
|
n_detections_dict[token] for token in cos_sims_full_df["Gene"] |
|
] |
|
|
|
|
|
cos_sims_full_df["Sig"] = [ |
|
1 if fdr < 0.05 else 0 for fdr in cos_sims_full_df["Goal_end_FDR"] |
|
] |
|
cos_sims_full_df = cos_sims_full_df.sort_values( |
|
by=["Sig", "Shift_to_goal_end", "Goal_end_FDR"], |
|
ascending=[False, False, True], |
|
) |
|
|
|
return cos_sims_full_df |
|
|
|
|
|
|
|
def isp_stats_vs_null(cos_sims_df, dict_list, null_dict_list): |
|
cos_sims_full_df = cos_sims_df.copy() |
|
|
|
cos_sims_full_df["Test_avg_shift"] = np.zeros(cos_sims_df.shape[0], dtype=float) |
|
cos_sims_full_df["Null_avg_shift"] = np.zeros(cos_sims_df.shape[0], dtype=float) |
|
cos_sims_full_df["Test_vs_null_avg_shift"] = np.zeros( |
|
cos_sims_df.shape[0], dtype=float |
|
) |
|
cos_sims_full_df["Test_vs_null_pval"] = np.zeros(cos_sims_df.shape[0], dtype=float) |
|
cos_sims_full_df["Test_vs_null_FDR"] = np.zeros(cos_sims_df.shape[0], dtype=float) |
|
cos_sims_full_df["N_Detections_test"] = np.zeros( |
|
cos_sims_df.shape[0], dtype="uint32" |
|
) |
|
cos_sims_full_df["N_Detections_null"] = np.zeros( |
|
cos_sims_df.shape[0], dtype="uint32" |
|
) |
|
|
|
for i in trange(cos_sims_df.shape[0]): |
|
token = cos_sims_df["Gene"][i] |
|
test_shifts = [] |
|
null_shifts = [] |
|
|
|
for dict_i in dict_list: |
|
test_shifts += dict_i.get((token, "cell_emb"), []) |
|
|
|
for dict_i in null_dict_list: |
|
null_shifts += dict_i.get((token, "cell_emb"), []) |
|
|
|
cos_sims_full_df.loc[i, "Test_avg_shift"] = np.mean(test_shifts) |
|
cos_sims_full_df.loc[i, "Null_avg_shift"] = np.mean(null_shifts) |
|
cos_sims_full_df.loc[i, "Test_vs_null_avg_shift"] = np.mean( |
|
test_shifts |
|
) - np.mean(null_shifts) |
|
cos_sims_full_df.loc[i, "Test_vs_null_pval"] = ranksums( |
|
test_shifts, null_shifts, nan_policy="omit" |
|
).pvalue |
|
|
|
cos_sims_full_df.Test_vs_null_pval = np.where( |
|
np.isnan(cos_sims_full_df.Test_vs_null_pval), |
|
1, |
|
cos_sims_full_df.Test_vs_null_pval, |
|
) |
|
cos_sims_full_df.loc[i, "N_Detections_test"] = len(test_shifts) |
|
cos_sims_full_df.loc[i, "N_Detections_null"] = len(null_shifts) |
|
|
|
cos_sims_full_df["Test_vs_null_FDR"] = get_fdr( |
|
cos_sims_full_df["Test_vs_null_pval"] |
|
) |
|
|
|
cos_sims_full_df["Sig"] = [ |
|
1 if fdr < 0.05 else 0 for fdr in cos_sims_full_df["Test_vs_null_FDR"] |
|
] |
|
cos_sims_full_df = cos_sims_full_df.sort_values( |
|
by=["Sig", "Test_vs_null_avg_shift", "Test_vs_null_FDR"], |
|
ascending=[False, False, True], |
|
) |
|
return cos_sims_full_df |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def isp_stats_mixture_model(cos_sims_df, dict_list, combos, anchor_token): |
|
names = ["Gene", "Gene_name", "Ensembl_ID"] |
|
|
|
if combos == 0: |
|
names += ["Test_avg_shift"] |
|
elif combos == 1: |
|
names += [ |
|
"Anchor_shift", |
|
"Test_token_shift", |
|
"Sum_of_indiv_shifts", |
|
"Combo_shift", |
|
"Combo_minus_sum_shift", |
|
] |
|
|
|
names += ["Impact_component", "Impact_component_percent"] |
|
|
|
cos_sims_full_df = pd.DataFrame(columns=names) |
|
avg_values = [] |
|
gene_names = [] |
|
|
|
for i in trange(cos_sims_df.shape[0]): |
|
token = cos_sims_df["Gene"][i] |
|
name = cos_sims_df["Gene_name"][i] |
|
ensembl_id = cos_sims_df["Ensembl_ID"][i] |
|
cos_shift_data = [] |
|
|
|
for dict_i in dict_list: |
|
if (combos == 0) and (anchor_token is not None): |
|
cos_shift_data += dict_i.get((anchor_token, token), []) |
|
else: |
|
cos_shift_data += dict_i.get((token, "cell_emb"), []) |
|
|
|
|
|
if combos == 0: |
|
test_values = cos_shift_data |
|
elif combos == 1: |
|
test_values = [] |
|
for tup in cos_shift_data: |
|
test_values.append(tup[2]) |
|
|
|
if len(test_values) > 0: |
|
avg_value = np.mean(test_values) |
|
avg_values.append(avg_value) |
|
gene_names.append(name) |
|
|
|
|
|
avg_values_to_fit = np.array(avg_values).reshape(-1, 1) |
|
gm = GaussianMixture(n_components=2, random_state=0).fit(avg_values_to_fit) |
|
|
|
for i in trange(cos_sims_df.shape[0]): |
|
token = cos_sims_df["Gene"][i] |
|
name = cos_sims_df["Gene_name"][i] |
|
ensembl_id = cos_sims_df["Ensembl_ID"][i] |
|
cos_shift_data = [] |
|
|
|
for dict_i in dict_list: |
|
if (combos == 0) and (anchor_token is not None): |
|
cos_shift_data += dict_i.get((anchor_token, token), []) |
|
else: |
|
cos_shift_data += dict_i.get((token, "cell_emb"), []) |
|
|
|
if combos == 0: |
|
mean_test = np.mean(cos_shift_data) |
|
impact_components = [ |
|
get_impact_component(value, gm) for value in cos_shift_data |
|
] |
|
elif combos == 1: |
|
anchor_cos_sim_megalist = [ |
|
anchor for anchor, token, combo in cos_shift_data |
|
] |
|
token_cos_sim_megalist = [token for anchor, token, combo in cos_shift_data] |
|
anchor_plus_token_cos_sim_megalist = [ |
|
1 - ((1 - anchor) + (1 - token)) |
|
for anchor, token, combo in cos_shift_data |
|
] |
|
combo_anchor_token_cos_sim_megalist = [ |
|
combo for anchor, token, combo in cos_shift_data |
|
] |
|
combo_minus_sum_cos_sim_megalist = [ |
|
combo - (1 - ((1 - anchor) + (1 - token))) |
|
for anchor, token, combo in cos_shift_data |
|
] |
|
|
|
mean_anchor = np.mean(anchor_cos_sim_megalist) |
|
mean_token = np.mean(token_cos_sim_megalist) |
|
mean_sum = np.mean(anchor_plus_token_cos_sim_megalist) |
|
mean_test = np.mean(combo_anchor_token_cos_sim_megalist) |
|
mean_combo_minus_sum = np.mean(combo_minus_sum_cos_sim_megalist) |
|
|
|
impact_components = [ |
|
get_impact_component(value, gm) |
|
for value in combo_anchor_token_cos_sim_megalist |
|
] |
|
|
|
impact_component = get_impact_component(mean_test, gm) |
|
impact_component_percent = np.mean(impact_components) * 100 |
|
|
|
data_i = [token, name, ensembl_id] |
|
if combos == 0: |
|
data_i += [mean_test] |
|
elif combos == 1: |
|
data_i += [ |
|
mean_anchor, |
|
mean_token, |
|
mean_sum, |
|
mean_test, |
|
mean_combo_minus_sum, |
|
] |
|
data_i += [impact_component, impact_component_percent] |
|
|
|
cos_sims_df_i = pd.DataFrame(dict(zip(names, data_i)), index=[i]) |
|
cos_sims_full_df = pd.concat([cos_sims_full_df, cos_sims_df_i]) |
|
|
|
|
|
cos_sims_full_df["N_Detections"] = [ |
|
n_detections(i, dict_list, "gene", anchor_token) |
|
for i in cos_sims_full_df["Gene"] |
|
] |
|
|
|
if combos == 0: |
|
cos_sims_full_df = cos_sims_full_df.sort_values( |
|
by=["Impact_component", "Test_avg_shift"], ascending=[False, True] |
|
) |
|
elif combos == 1: |
|
cos_sims_full_df = cos_sims_full_df.sort_values( |
|
by=["Impact_component", "Combo_minus_sum_shift"], ascending=[False, True] |
|
) |
|
return cos_sims_full_df |
|
|
|
|
|
class InSilicoPerturberStats: |
|
valid_option_dict = { |
|
"mode": { |
|
"goal_state_shift", |
|
"vs_null", |
|
"mixture_model", |
|
"aggregate_data", |
|
"aggregate_gene_shifts", |
|
}, |
|
"genes_perturbed": {"all", list}, |
|
"combos": {0, 1}, |
|
"anchor_gene": {None, str}, |
|
"cell_states_to_model": {None, dict}, |
|
"pickle_suffix": {None, str}, |
|
} |
|
|
|
def __init__( |
|
self, |
|
mode="mixture_model", |
|
genes_perturbed="all", |
|
combos=0, |
|
anchor_gene=None, |
|
cell_states_to_model=None, |
|
pickle_suffix="_raw.pickle", |
|
token_dictionary_file=TOKEN_DICTIONARY_FILE, |
|
gene_name_id_dictionary_file=ENSEMBL_DICTIONARY_FILE, |
|
): |
|
""" |
|
Initialize in silico perturber stats generator. |
|
|
|
**Parameters:** |
|
|
|
mode : {"goal_state_shift", "vs_null", "mixture_model", "aggregate_data", "aggregate_gene_shifts"} |
|
| Type of stats. |
|
| "goal_state_shift": perturbation vs. random for desired cell state shift |
|
| "vs_null": perturbation vs. null from provided null distribution dataset |
|
| "mixture_model": perturbation in impact vs. no impact component of mixture model (no goal direction) |
|
| "aggregate_data": aggregates cosine shifts for single perturbation in multiple cells |
|
| "aggregate_gene_shifts": aggregates cosine shifts of genes in response to perturbation(s) |
|
genes_perturbed : "all", list |
|
| Genes perturbed in isp experiment. |
|
| Default is assuming genes_to_perturb in isp experiment was "all" (each gene in each cell). |
|
| Otherwise, may provide a list of ENSEMBL IDs of genes perturbed as a group all together. |
|
combos : {0,1,2} |
|
| Whether to perturb genes individually (0), in pairs (1), or in triplets (2). |
|
anchor_gene : None, str |
|
| ENSEMBL ID of gene to use as anchor in combination perturbations or in testing effect on downstream genes. |
|
| For example, if combos=1 and anchor_gene="ENSG00000136574": |
|
| analyzes data for anchor gene perturbed in combination with each other gene. |
|
| However, if combos=0 and anchor_gene="ENSG00000136574": |
|
| analyzes data for the effect of anchor gene's perturbation on the embedding of each other gene. |
|
cell_states_to_model: None, dict |
|
| Cell states to model if testing perturbations that achieve goal state change. |
|
| Four-item dictionary with keys: state_key, start_state, goal_state, and alt_states |
|
| state_key: key specifying name of column in .dataset that defines the start/goal states |
|
| start_state: value in the state_key column that specifies the start state |
|
| goal_state: value in the state_key column taht specifies the goal end state |
|
| alt_states: list of values in the state_key column that specify the alternate end states |
|
| For example: {"state_key": "disease", |
|
| "start_state": "dcm", |
|
| "goal_state": "nf", |
|
| "alt_states": ["hcm", "other1", "other2"]} |
|
token_dictionary_file : Path |
|
| Path to pickle file containing token dictionary (Ensembl ID:token). |
|
gene_name_id_dictionary_file : Path |
|
| Path to pickle file containing gene name to ID dictionary (gene name:Ensembl ID). |
|
""" |
|
|
|
self.mode = mode |
|
self.genes_perturbed = genes_perturbed |
|
self.combos = combos |
|
self.anchor_gene = anchor_gene |
|
self.cell_states_to_model = cell_states_to_model |
|
self.pickle_suffix = pickle_suffix |
|
|
|
self.validate_options() |
|
|
|
|
|
with open(token_dictionary_file, "rb") as f: |
|
self.gene_token_dict = pickle.load(f) |
|
|
|
|
|
with open(gene_name_id_dictionary_file, "rb") as f: |
|
self.gene_name_id_dict = pickle.load(f) |
|
|
|
if anchor_gene is None: |
|
self.anchor_token = None |
|
else: |
|
self.anchor_token = self.gene_token_dict[self.anchor_gene] |
|
|
|
def validate_options(self): |
|
for attr_name, valid_options in self.valid_option_dict.items(): |
|
attr_value = self.__dict__[attr_name] |
|
if type(attr_value) not in {list, dict}: |
|
if attr_name in {"anchor_gene"}: |
|
continue |
|
elif attr_value in valid_options: |
|
continue |
|
valid_type = False |
|
for option in valid_options: |
|
if (option in [str, int, list, dict]) and isinstance( |
|
attr_value, option |
|
): |
|
valid_type = True |
|
break |
|
if not valid_type: |
|
logger.error( |
|
f"Invalid option for {attr_name}. " |
|
f"Valid options for {attr_name}: {valid_options}" |
|
) |
|
raise |
|
|
|
if self.cell_states_to_model is not None: |
|
if len(self.cell_states_to_model.items()) == 1: |
|
logger.warning( |
|
"The single value dictionary for cell_states_to_model will be " |
|
"replaced with a dictionary with named keys for start, goal, and alternate states. " |
|
"Please specify state_key, start_state, goal_state, and alt_states " |
|
"in the cell_states_to_model dictionary for future use. " |
|
"For example, cell_states_to_model={" |
|
"'state_key': 'disease', " |
|
"'start_state': 'dcm', " |
|
"'goal_state': 'nf', " |
|
"'alt_states': ['hcm', 'other1', 'other2']}" |
|
) |
|
for key, value in self.cell_states_to_model.items(): |
|
if (len(value) == 3) and isinstance(value, tuple): |
|
if ( |
|
isinstance(value[0], list) |
|
and isinstance(value[1], list) |
|
and isinstance(value[2], list) |
|
): |
|
if len(value[0]) == 1 and len(value[1]) == 1: |
|
all_values = value[0] + value[1] + value[2] |
|
if len(all_values) == len(set(all_values)): |
|
continue |
|
|
|
state_values = flatten_list(list(self.cell_states_to_model.values())) |
|
self.cell_states_to_model = { |
|
"state_key": list(self.cell_states_to_model.keys())[0], |
|
"start_state": state_values[0][0], |
|
"goal_state": state_values[1][0], |
|
"alt_states": state_values[2:][0], |
|
} |
|
elif set(self.cell_states_to_model.keys()) == { |
|
"state_key", |
|
"start_state", |
|
"goal_state", |
|
"alt_states", |
|
}: |
|
if ( |
|
(self.cell_states_to_model["state_key"] is None) |
|
or (self.cell_states_to_model["start_state"] is None) |
|
or (self.cell_states_to_model["goal_state"] is None) |
|
): |
|
logger.error( |
|
"Please specify 'state_key', 'start_state', and 'goal_state' in cell_states_to_model." |
|
) |
|
raise |
|
|
|
if ( |
|
self.cell_states_to_model["start_state"] |
|
== self.cell_states_to_model["goal_state"] |
|
): |
|
logger.error("All states must be unique.") |
|
raise |
|
|
|
if self.cell_states_to_model["alt_states"] is not None: |
|
if not isinstance(self.cell_states_to_model["alt_states"], list): |
|
logger.error( |
|
"self.cell_states_to_model['alt_states'] must be a list (even if it is one element)." |
|
) |
|
raise |
|
if len(self.cell_states_to_model["alt_states"]) != len( |
|
set(self.cell_states_to_model["alt_states"]) |
|
): |
|
logger.error("All states must be unique.") |
|
raise |
|
|
|
elif set(self.cell_states_to_model.keys()) == { |
|
"state_key", |
|
"start_state", |
|
"goal_state", |
|
}: |
|
self.cell_states_to_model["alt_states"] = [] |
|
else: |
|
logger.error( |
|
"cell_states_to_model must only have the following four keys: " |
|
"'state_key', 'start_state', 'goal_state', 'alt_states'." |
|
"For example, cell_states_to_model={" |
|
"'state_key': 'disease', " |
|
"'start_state': 'dcm', " |
|
"'goal_state': 'nf', " |
|
"'alt_states': ['hcm', 'other1', 'other2']}" |
|
) |
|
raise |
|
|
|
if self.anchor_gene is not None: |
|
self.anchor_gene = None |
|
logger.warning( |
|
"anchor_gene set to None. " |
|
"Currently, anchor gene not available " |
|
"when modeling multiple cell states." |
|
) |
|
|
|
if self.combos > 0: |
|
if self.anchor_gene is None: |
|
logger.error( |
|
"Currently, stats are only supported for combination " |
|
"in silico perturbation run with anchor gene. Please add " |
|
"anchor gene when using with combos > 0. " |
|
) |
|
raise |
|
|
|
if (self.mode == "mixture_model") and (self.genes_perturbed != "all"): |
|
logger.error( |
|
"Mixture model mode requires multiple gene perturbations to fit model " |
|
"so is incompatible with a single grouped perturbation." |
|
) |
|
raise |
|
if (self.mode == "aggregate_data") and (self.genes_perturbed == "all"): |
|
logger.error( |
|
"Simple data aggregation mode is for single perturbation in multiple cells " |
|
"so is incompatible with a genes_perturbed being 'all'." |
|
) |
|
raise |
|
|
|
def get_stats( |
|
self, |
|
input_data_directory, |
|
null_dist_data_directory, |
|
output_directory, |
|
output_prefix, |
|
null_dict_list=None, |
|
): |
|
""" |
|
Get stats for in silico perturbation data and save as results in output_directory. |
|
|
|
**Parameters:** |
|
|
|
input_data_directory : Path |
|
| Path to directory containing cos_sim dictionary inputs |
|
null_dist_data_directory : Path |
|
| Path to directory containing null distribution cos_sim dictionary inputs |
|
output_directory : Path |
|
| Path to directory where perturbation data will be saved as .csv |
|
output_prefix : str |
|
| Prefix for output .csv |
|
null_dict_list: list[dict] |
|
| List of loaded null distribution dictionary if more than one comparison vs. the null is to be performed |
|
|
|
**Outputs:** |
|
|
|
Definition of possible columns in .csv output file. |
|
|
|
| Of note, not all columns will be present in all output files. |
|
| Some columns are specific to particular perturbation modes. |
|
|
|
| "Gene": gene token |
|
| "Gene_name": gene name |
|
| "Ensembl_ID": gene Ensembl ID |
|
| "N_Detections": number of cells in which each gene or gene combination was detected in the input dataset |
|
| "Sig": 1 if FDR<0.05, otherwise 0 |
|
|
|
| "Shift_to_goal_end": cosine shift from start state towards goal end state in response to given perturbation |
|
| "Shift_to_alt_end": cosine shift from start state towards alternate end state in response to given perturbation |
|
| "Goal_end_vs_random_pval": pvalue of cosine shift from start state towards goal end state by Wilcoxon |
|
| pvalue compares shift caused by perturbing given gene compared to random genes |
|
| "Alt_end_vs_random_pval": pvalue of cosine shift from start state towards alternate end state by Wilcoxon |
|
| pvalue compares shift caused by perturbing given gene compared to random genes |
|
| "Goal_end_FDR": Benjamini-Hochberg correction of "Goal_end_vs_random_pval" |
|
| "Alt_end_FDR": Benjamini-Hochberg correction of "Alt_end_vs_random_pval" |
|
|
|
| "Test_avg_shift": cosine shift in response to given perturbation in cells from test distribution |
|
| "Null_avg_shift": cosine shift in response to given perturbation in cells from null distribution (e.g. random cells) |
|
| "Test_vs_null_avg_shift": difference in cosine shift in cells from test vs. null distribution |
|
| (i.e. "Test_avg_shift" minus "Null_avg_shift") |
|
| "Test_vs_null_pval": pvalue of cosine shift in test vs. null distribution |
|
| "Test_vs_null_FDR": Benjamini-Hochberg correction of "Test_vs_null_pval" |
|
| "N_Detections_test": "N_Detections" in cells from test distribution |
|
| "N_Detections_null": "N_Detections" in cells from null distribution |
|
|
|
| "Anchor_shift": cosine shift in response to given perturbation of anchor gene |
|
| "Test_token_shift": cosine shift in response to given perturbation of test gene |
|
| "Sum_of_indiv_shifts": sum of cosine shifts in response to individually perturbing test and anchor genes |
|
| "Combo_shift": cosine shift in response to given perturbation of both anchor and test gene(s) in combination |
|
| "Combo_minus_sum_shift": difference of cosine shifts in response combo perturbation vs. sum of individual perturbations |
|
| (i.e. "Combo_shift" minus "Sum_of_indiv_shifts") |
|
| "Impact_component": whether the given perturbation was modeled to be within the impact component by the mixture model |
|
| 1: within impact component; 0: not within impact component |
|
| "Impact_component_percent": percent of cells in which given perturbation was modeled to be within impact component |
|
|
|
| In case of aggregating data / gene shifts: |
|
| "Perturbed": ID(s) of gene(s) being perturbed |
|
| "Affected": ID of affected gene or "cell_emb" indicating the impact on the cell embedding as a whole |
|
| "Cosine_sim_mean": mean of cosine similarity of cell or affected gene in original vs. perturbed |
|
| "Cosine_sim_stdev": standard deviation of cosine similarity of cell or affected gene in original vs. perturbed |
|
""" |
|
|
|
if self.mode not in [ |
|
"goal_state_shift", |
|
"vs_null", |
|
"mixture_model", |
|
"aggregate_data", |
|
"aggregate_gene_shifts", |
|
]: |
|
logger.error( |
|
"Currently, only modes available are stats for goal_state_shift, " |
|
"vs_null (comparing to null distribution), " |
|
"mixture_model (fitting mixture model for perturbations with or without impact), " |
|
"and aggregating data for single perturbations or for gene embedding shifts." |
|
) |
|
raise |
|
|
|
self.gene_token_id_dict = invert_dict(self.gene_token_dict) |
|
self.gene_id_name_dict = invert_dict(self.gene_name_id_dict) |
|
|
|
|
|
if (self.combos == 0) and (self.anchor_token is not None): |
|
|
|
dict_list = read_dictionaries( |
|
input_data_directory, |
|
"gene", |
|
self.anchor_token, |
|
self.cell_states_to_model, |
|
self.pickle_suffix, |
|
) |
|
gene_list = get_gene_list(dict_list, "gene") |
|
elif ( |
|
(self.combos == 0) |
|
and (self.anchor_token is None) |
|
and (self.mode == "aggregate_gene_shifts") |
|
): |
|
dict_list = read_dictionaries( |
|
input_data_directory, |
|
"gene", |
|
self.anchor_token, |
|
self.cell_states_to_model, |
|
self.pickle_suffix, |
|
) |
|
gene_list = get_gene_list(dict_list, "cell") |
|
else: |
|
|
|
dict_list = read_dictionaries( |
|
input_data_directory, |
|
"cell", |
|
self.anchor_token, |
|
self.cell_states_to_model, |
|
self.pickle_suffix, |
|
) |
|
gene_list = get_gene_list(dict_list, "cell") |
|
|
|
|
|
cos_sims_df_initial = pd.DataFrame( |
|
{ |
|
"Gene": gene_list, |
|
"Gene_name": [self.token_to_gene_name(item) for item in gene_list], |
|
"Ensembl_ID": [ |
|
token_tuple_to_ensembl_ids(genes, self.gene_token_id_dict) |
|
if self.genes_perturbed != "all" |
|
else self.gene_token_id_dict[genes[1]] |
|
if isinstance(genes, tuple) |
|
else self.gene_token_id_dict[genes] |
|
for genes in gene_list |
|
], |
|
}, |
|
index=[i for i in range(len(gene_list))], |
|
) |
|
|
|
if self.mode == "goal_state_shift": |
|
cos_sims_df = isp_stats_to_goal_state( |
|
cos_sims_df_initial, |
|
dict_list, |
|
self.cell_states_to_model, |
|
self.genes_perturbed, |
|
) |
|
|
|
elif self.mode == "vs_null": |
|
if null_dict_list is None: |
|
null_dict_list = read_dictionaries( |
|
null_dist_data_directory, |
|
"cell", |
|
self.anchor_token, |
|
self.cell_states_to_model, |
|
self.pickle_suffix, |
|
) |
|
cos_sims_df = isp_stats_vs_null( |
|
cos_sims_df_initial, dict_list, null_dict_list |
|
) |
|
|
|
elif self.mode == "mixture_model": |
|
cos_sims_df = isp_stats_mixture_model( |
|
cos_sims_df_initial, dict_list, self.combos, self.anchor_token |
|
) |
|
|
|
elif self.mode == "aggregate_data": |
|
cos_sims_df = isp_aggregate_grouped_perturb(cos_sims_df_initial, dict_list, self.genes_perturbed) |
|
|
|
elif self.mode == "aggregate_gene_shifts": |
|
cos_sims_df = isp_aggregate_gene_shifts( |
|
cos_sims_df_initial, |
|
dict_list, |
|
self.gene_token_id_dict, |
|
self.gene_id_name_dict, |
|
) |
|
|
|
|
|
output_path = (Path(output_directory) / output_prefix).with_suffix(".csv") |
|
cos_sims_df.to_csv(output_path) |
|
|
|
def token_to_gene_name(self, item): |
|
if np.issubdtype(type(item), np.integer): |
|
return self.gene_id_name_dict.get( |
|
self.gene_token_id_dict.get(item, np.nan), np.nan |
|
) |
|
if isinstance(item, tuple): |
|
return tuple( |
|
[ |
|
self.gene_id_name_dict.get( |
|
self.gene_token_id_dict.get(i, np.nan), np.nan |
|
) |
|
for i in item |
|
] |
|
) |
|
|