|
""" |
|
Geneformer tokenizer. |
|
|
|
**Input data:** |
|
|
|
| *Required format:* raw counts scRNAseq data without feature selection as .loom or anndata file. |
|
| *Required row (gene) attribute:* "ensembl_id"; Ensembl ID for each gene. |
|
| *Required col (cell) attribute:* "n_counts"; total read counts in that cell. |
|
|
|
| *Optional col (cell) attribute:* "filter_pass"; binary indicator of whether cell should be tokenized based on user-defined filtering criteria. |
|
| *Optional col (cell) attributes:* any other cell metadata can be passed on to the tokenized dataset as a custom attribute dictionary as shown below. |
|
|
|
**Usage:** |
|
|
|
.. code-block :: python |
|
|
|
>>> from geneformer import TranscriptomeTokenizer |
|
>>> tk = TranscriptomeTokenizer({"cell_type": "cell_type", "organ_major": "organ"}, nproc=4) |
|
>>> tk.tokenize_data("data_directory", "output_directory", "output_prefix") |
|
|
|
**Description:** |
|
|
|
| Input data is a directory with .loom or .h5ad files containing raw counts from single cell RNAseq data, including all genes detected in the transcriptome without feature selection. The input file type is specified by the argument file_format in the tokenize_data function. |
|
|
|
| The discussion below references the .loom file format, but the analagous labels are required for .h5ad files, just that they will be column instead of row attributes and vice versa due to the transposed format of the two file types. |
|
|
|
| Genes should be labeled with Ensembl IDs (loom row attribute "ensembl_id"), which provide a unique identifer for conversion to tokens. Other forms of gene annotations (e.g. gene names) can be converted to Ensembl IDs via Ensembl Biomart. Cells should be labeled with the total read count in the cell (loom column attribute "n_counts") to be used for normalization. |
|
|
|
| No cell metadata is required, but custom cell attributes may be passed onto the tokenized dataset by providing a dictionary of custom attributes to be added, which is formatted as loom_col_attr_name : desired_dataset_col_attr_name. For example, if the original .loom dataset has column attributes "cell_type" and "organ_major" and one would like to retain these attributes as labels in the tokenized dataset with the new names "cell_type" and "organ", respectively, the following custom attribute dictionary should be provided: {"cell_type": "cell_type", "organ_major": "organ"}. |
|
|
|
| Additionally, if the original .loom file contains a cell column attribute called "filter_pass", this column will be used as a binary indicator of whether to include these cells in the tokenized data. All cells with "1" in this attribute will be tokenized, whereas the others will be excluded. One may use this column to indicate QC filtering or other criteria for selection for inclusion in the final tokenized dataset. |
|
|
|
| If one's data is in other formats besides .loom or .h5ad, one can use the relevant tools (such as Anndata tools) to convert the file to a .loom or .h5ad format prior to running the transcriptome tokenizer. |
|
|
|
| OF NOTE: Take care that the correct token dictionary and gene median file is used for the correct model. |
|
|
|
| OF NOTE: For 95M model series, special_token should be True and model_input_size should be 4096. For 30M model series, special_token should be False and model_input_size should be 2048. |
|
|
|
""" |
|
|
|
from __future__ import annotations |
|
|
|
import logging |
|
import os |
|
import pickle |
|
import warnings |
|
from collections import Counter |
|
from pathlib import Path |
|
from typing import Literal |
|
|
|
import loompy as lp |
|
import numpy as np |
|
import pandas as pd |
|
import scanpy as sc |
|
import scipy.sparse as sp |
|
from datasets import Dataset |
|
from tqdm import tqdm |
|
|
|
warnings.filterwarnings("ignore", message=".*The 'nopython' keyword.*") |
|
import loompy as lp |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
from . import ENSEMBL_MAPPING_FILE, GENE_MEDIAN_FILE, TOKEN_DICTIONARY_FILE |
|
|
|
def rank_genes(gene_vector, gene_tokens): |
|
""" |
|
Rank gene expression vector. |
|
""" |
|
|
|
sorted_indices = np.argsort(-gene_vector) |
|
return gene_tokens[sorted_indices] |
|
|
|
|
|
def tokenize_cell(gene_vector, gene_tokens): |
|
""" |
|
Convert normalized gene expression vector to tokenized rank value encoding. |
|
""" |
|
|
|
|
|
nonzero_mask = np.nonzero(gene_vector)[0] |
|
|
|
return rank_genes(gene_vector[nonzero_mask], gene_tokens[nonzero_mask]) |
|
|
|
|
|
def sum_ensembl_ids( |
|
data_directory, |
|
collapse_gene_ids, |
|
gene_mapping_dict, |
|
gene_token_dict, |
|
file_format="loom", |
|
chunk_size=512, |
|
): |
|
if file_format == "loom": |
|
""" |
|
Map Ensembl IDs from gene mapping dictionary. If duplicate Ensembl IDs are found, sum counts together. |
|
""" |
|
with lp.connect(data_directory) as data: |
|
assert ( |
|
"ensembl_id" in data.ra.keys() |
|
), "'ensembl_id' column missing from data.ra.keys()" |
|
|
|
assert ( |
|
"ensembl_id_collapsed" not in data.ra.keys() |
|
), "'ensembl_id_collapsed' column already exists in data.ra.keys()" |
|
|
|
|
|
gene_ids_in_dict = [ |
|
gene for gene in data.ra.ensembl_id if gene in gene_token_dict.keys() |
|
] |
|
if collapse_gene_ids is False: |
|
|
|
if len(gene_ids_in_dict) == len(set(gene_ids_in_dict)): |
|
return data_directory |
|
else: |
|
raise ValueError("Error: data Ensembl IDs non-unique.") |
|
|
|
gene_ids_collapsed = [ |
|
gene_mapping_dict.get(gene_id.upper()) for gene_id in data.ra.ensembl_id |
|
] |
|
gene_ids_collapsed_in_dict = [ |
|
gene for gene in gene_ids_collapsed if gene in gene_token_dict.keys() |
|
] |
|
|
|
if len(set(gene_ids_in_dict)) == len(set(gene_ids_collapsed_in_dict)): |
|
data.ra["ensembl_id_collapsed"] = gene_ids_collapsed |
|
return data_directory |
|
else: |
|
dedup_filename = data_directory.with_name( |
|
data_directory.stem + "__dedup.loom" |
|
) |
|
data.ra["ensembl_id_collapsed"] = gene_ids_collapsed |
|
dup_genes = [ |
|
idx |
|
for idx, count in Counter(data.ra["ensembl_id_collapsed"]).items() |
|
if count > 1 |
|
] |
|
num_chunks = int(np.ceil(data.shape[1] / chunk_size)) |
|
first_chunk = True |
|
for _, _, view in tqdm( |
|
data.scan(axis=1, batch_size=chunk_size), total=num_chunks |
|
): |
|
|
|
def process_chunk(view, duplic_genes): |
|
data_count_view = pd.DataFrame( |
|
view, index=data.ra["ensembl_id_collapsed"] |
|
) |
|
unique_data_df = data_count_view.loc[ |
|
~data_count_view.index.isin(duplic_genes) |
|
] |
|
dup_data_df = data_count_view.loc[ |
|
data_count_view.index.isin( |
|
[i for i in duplic_genes if "None" not in i] |
|
) |
|
] |
|
summed_data = dup_data_df.groupby(dup_data_df.index).sum() |
|
if not summed_data.index.is_unique: |
|
raise ValueError( |
|
"Error: Ensembl IDs in summed data frame non-unique." |
|
) |
|
data_count_view = pd.concat( |
|
[unique_data_df, summed_data], axis=0 |
|
) |
|
if not data_count_view.index.is_unique: |
|
raise ValueError( |
|
"Error: Ensembl IDs in final data frame non-unique." |
|
) |
|
return data_count_view |
|
|
|
processed_chunk = process_chunk(view[:, :], dup_genes) |
|
processed_array = processed_chunk.to_numpy() |
|
new_row_attrs = {"ensembl_id_collapsed": processed_chunk.index.to_numpy()} |
|
|
|
if "n_counts" not in view.ca.keys(): |
|
total_count_view = np.sum(view[:, :], axis=0).astype(int) |
|
view.ca["n_counts"] = total_count_view |
|
|
|
if first_chunk: |
|
lp.create( |
|
f"{dedup_filename}", |
|
processed_array, |
|
row_attrs=new_row_attrs, |
|
col_attrs=view.ca, |
|
) |
|
first_chunk = False |
|
else: |
|
with lp.connect(dedup_filename, mode="r+") as dsout: |
|
dsout.add_columns(processed_array, col_attrs=view.ca) |
|
return dedup_filename |
|
|
|
elif file_format == "h5ad": |
|
""" |
|
Map Ensembl IDs from gene mapping dictionary. If duplicate Ensembl IDs are found, sum counts together. |
|
Returns adata object with deduplicated Ensembl IDs. |
|
""" |
|
|
|
data = sc.read_h5ad(str(data_directory)) |
|
|
|
assert ( |
|
"ensembl_id" in data.var.columns |
|
), "'ensembl_id' column missing from data.var" |
|
|
|
assert ( |
|
"ensembl_id_collapsed" not in data.var.columns |
|
), "'ensembl_id_collapsed' column already exists in data.var" |
|
|
|
|
|
|
|
gene_ids_in_dict = [ |
|
gene for gene in data.var.ensembl_id if gene in gene_token_dict.keys() |
|
] |
|
if collapse_gene_ids is False: |
|
|
|
if len(gene_ids_in_dict) == len(set(gene_ids_in_dict)): |
|
return data |
|
else: |
|
raise ValueError("Error: data Ensembl IDs non-unique.") |
|
|
|
|
|
gene_ids_collapsed = [ |
|
gene_mapping_dict.get(gene_id.upper()) for gene_id in data.var.ensembl_id |
|
] |
|
gene_ids_collapsed_in_dict = [ |
|
gene for gene in gene_ids_collapsed if gene in gene_token_dict.keys() |
|
] |
|
if len(set(gene_ids_in_dict)) == len(set(gene_ids_collapsed_in_dict)): |
|
data.var["ensembl_id_collapsed"] = data.var.ensembl_id.map(gene_mapping_dict) |
|
return data |
|
|
|
else: |
|
data.var["ensembl_id_collapsed"] = gene_ids_collapsed |
|
data.var_names = gene_ids_collapsed |
|
data = data[:, ~data.var.index.isna()] |
|
dup_genes = [ |
|
idx for idx, count in Counter(data.var_names).items() if count > 1 |
|
] |
|
|
|
num_chunks = int(np.ceil(data.shape[0] / chunk_size)) |
|
|
|
processed_genes = [] |
|
for i in tqdm(range(num_chunks)): |
|
start_idx = i * chunk_size |
|
end_idx = min((i + 1) * chunk_size, data.shape[0]) |
|
data_chunk = data[start_idx:end_idx, :] |
|
|
|
processed_chunks = [] |
|
for dup_gene in dup_genes: |
|
data_dup_gene = data_chunk[:, data_chunk.var_names == dup_gene] |
|
df = pd.DataFrame.sparse.from_spmatrix( |
|
data_dup_gene.X, |
|
index=data_dup_gene.obs_names, |
|
columns=data_dup_gene.var_names, |
|
) |
|
df_sum = pd.DataFrame(df.sum(axis=1)) |
|
df_sum.columns = [dup_gene] |
|
df_sum.index = data_dup_gene.obs.index |
|
processed_chunks.append(df_sum) |
|
|
|
processed_chunks = pd.concat(processed_chunks, axis=1) |
|
processed_genes.append(processed_chunks) |
|
processed_genes = pd.concat(processed_genes, axis=0) |
|
var_df = pd.DataFrame({"ensembl_id_collapsed": processed_genes.columns}) |
|
var_df.index = processed_genes.columns |
|
processed_genes = sc.AnnData(X=processed_genes, obs=data.obs, var=var_df) |
|
|
|
data_dedup = data[:, ~data.var.index.isin(dup_genes)] |
|
data_dedup = sc.concat([data_dedup, processed_genes], axis=1) |
|
data_dedup.obs = data.obs |
|
return data_dedup |
|
|
|
|
|
class TranscriptomeTokenizer: |
|
def __init__( |
|
self, |
|
custom_attr_name_dict=None, |
|
nproc=1, |
|
chunk_size=512, |
|
model_input_size=4096, |
|
special_token=True, |
|
collapse_gene_ids=True, |
|
gene_median_file=GENE_MEDIAN_FILE, |
|
token_dictionary_file=TOKEN_DICTIONARY_FILE, |
|
gene_mapping_file=ENSEMBL_MAPPING_FILE, |
|
): |
|
""" |
|
Initialize tokenizer. |
|
|
|
**Parameters:** |
|
|
|
custom_attr_name_dict : None, dict |
|
| Dictionary of custom attributes to be added to the dataset. |
|
| Keys are the names of the attributes in the loom file. |
|
| Values are the names of the attributes in the dataset. |
|
nproc : int |
|
| Number of processes to use for dataset mapping. |
|
chunk_size : int = 512 |
|
| Chunk size for anndata tokenizer. |
|
model_input_size : int = 4096 |
|
| Max input size of model to truncate input to. |
|
| For the 30M model series, should be 2048. For the 95M model series, should be 4096. |
|
special_token : bool = True |
|
| Adds CLS token before and EOS token after rank value encoding. |
|
| For the 30M model series, should be False. For the 95M model series, should be True. |
|
collapse_gene_ids : bool = True |
|
| Whether to collapse gene IDs based on gene mapping dictionary. |
|
gene_median_file : Path |
|
| Path to pickle file containing dictionary of non-zero median |
|
| gene expression values across Genecorpus-30M. |
|
token_dictionary_file : Path |
|
| Path to pickle file containing token dictionary (Ensembl IDs:token). |
|
gene_mapping_file : None, Path |
|
| Path to pickle file containing dictionary for collapsing gene IDs. |
|
|
|
""" |
|
|
|
self.custom_attr_name_dict = custom_attr_name_dict |
|
|
|
|
|
self.nproc = nproc |
|
|
|
|
|
self.chunk_size = chunk_size |
|
|
|
|
|
self.model_input_size = model_input_size |
|
|
|
|
|
self.special_token = special_token |
|
|
|
|
|
|
|
with open(gene_median_file, "rb") as f: |
|
self.gene_median_dict = pickle.load(f) |
|
|
|
|
|
with open(token_dictionary_file, "rb") as f: |
|
self.gene_token_dict = pickle.load(f) |
|
|
|
|
|
if self.special_token: |
|
if ("<cls>" not in self.gene_token_dict.keys()) and ( |
|
"<eos>" not in self.gene_token_dict.keys() |
|
): |
|
logger.error( |
|
"<cls> and <eos> required in gene_token_dict when special_token = True." |
|
) |
|
raise |
|
|
|
if not self.special_token: |
|
if ("<cls>" in self.gene_token_dict.keys()) and ( |
|
"<eos>" in self.gene_token_dict.keys() |
|
): |
|
logger.warning( |
|
"<cls> and <eos> are in gene_token_dict but special_token = False. Please note that for 95M model series, special_token should be True." |
|
) |
|
|
|
|
|
self.collapse_gene_ids = collapse_gene_ids |
|
|
|
|
|
if gene_mapping_file is not None: |
|
with open(gene_mapping_file, "rb") as f: |
|
self.gene_mapping_dict = pickle.load(f) |
|
else: |
|
self.gene_mapping_dict = {k: k for k, _ in self.gene_token_dict.items()} |
|
|
|
|
|
self.gene_keys = list(self.gene_token_dict.keys()) |
|
|
|
|
|
gene_keys_set = set(self.gene_token_dict.keys()) |
|
self.gene_mapping_dict = { |
|
k: v for k, v in self.gene_mapping_dict.items() if v in gene_keys_set |
|
} |
|
|
|
|
|
self.genelist_dict = dict(zip(self.gene_keys, [True] * len(self.gene_keys))) |
|
|
|
def tokenize_data( |
|
self, |
|
data_directory: Path | str, |
|
output_directory: Path | str, |
|
output_prefix: str, |
|
file_format: Literal["loom", "h5ad"] = "loom", |
|
use_generator: bool = False, |
|
): |
|
""" |
|
Tokenize .loom files in data_directory and save as tokenized .dataset in output_directory. |
|
|
|
**Parameters:** |
|
|
|
data_directory : Path |
|
| Path to directory containing loom files or anndata files |
|
output_directory : Path |
|
| Path to directory where tokenized data will be saved as .dataset |
|
output_prefix : str |
|
| Prefix for output .dataset |
|
file_format : str |
|
| Format of input files. Can be "loom" or "h5ad". |
|
use_generator : bool |
|
| Whether to use generator or dict for tokenization. |
|
|
|
""" |
|
tokenized_cells, cell_metadata = self.tokenize_files( |
|
Path(data_directory), file_format |
|
) |
|
tokenized_dataset = self.create_dataset( |
|
tokenized_cells, |
|
cell_metadata, |
|
use_generator=use_generator, |
|
) |
|
|
|
output_path = (Path(output_directory) / output_prefix).with_suffix(".dataset") |
|
tokenized_dataset.save_to_disk(str(output_path)) |
|
|
|
def tokenize_files( |
|
self, data_directory, file_format: Literal["loom", "h5ad"] = "loom" |
|
): |
|
tokenized_cells = [] |
|
if self.custom_attr_name_dict is not None: |
|
cell_attr = [attr_key for attr_key in self.custom_attr_name_dict.keys()] |
|
cell_metadata = { |
|
attr_key: [] for attr_key in self.custom_attr_name_dict.values() |
|
} |
|
|
|
|
|
file_found = 0 |
|
|
|
tokenize_file_fn = ( |
|
self.tokenize_loom if file_format == "loom" else self.tokenize_anndata |
|
) |
|
for file_path in data_directory.glob(f"*.{file_format}"): |
|
file_found = 1 |
|
print(f"Tokenizing {file_path}") |
|
file_tokenized_cells, file_cell_metadata = tokenize_file_fn(file_path) |
|
tokenized_cells += file_tokenized_cells |
|
if self.custom_attr_name_dict is not None: |
|
for k in cell_attr: |
|
cell_metadata[self.custom_attr_name_dict[k]] += file_cell_metadata[ |
|
k |
|
] |
|
else: |
|
cell_metadata = None |
|
|
|
if file_found == 0: |
|
logger.error( |
|
f"No .{file_format} files found in directory {data_directory}." |
|
) |
|
raise |
|
return tokenized_cells, cell_metadata |
|
|
|
def tokenize_anndata(self, adata_file_path, target_sum=10_000): |
|
adata = sum_ensembl_ids( |
|
adata_file_path, |
|
self.collapse_gene_ids, |
|
self.gene_mapping_dict, |
|
self.gene_token_dict, |
|
file_format="h5ad", |
|
chunk_size=self.chunk_size, |
|
) |
|
|
|
if self.custom_attr_name_dict is not None: |
|
file_cell_metadata = { |
|
attr_key: [] for attr_key in self.custom_attr_name_dict.keys() |
|
} |
|
|
|
coding_miRNA_loc = np.where( |
|
[self.genelist_dict.get(i, False) for i in adata.var["ensembl_id_collapsed"]] |
|
)[0] |
|
norm_factor_vector = np.array( |
|
[ |
|
self.gene_median_dict[i] |
|
for i in adata.var["ensembl_id_collapsed"][coding_miRNA_loc] |
|
] |
|
) |
|
coding_miRNA_ids = adata.var["ensembl_id_collapsed"][coding_miRNA_loc] |
|
coding_miRNA_tokens = np.array( |
|
[self.gene_token_dict[i] for i in coding_miRNA_ids] |
|
) |
|
|
|
try: |
|
_ = adata.obs["filter_pass"] |
|
except KeyError: |
|
var_exists = False |
|
else: |
|
var_exists = True |
|
|
|
if var_exists: |
|
filter_pass_loc = np.where([i == 1 for i in adata.obs["filter_pass"]])[0] |
|
elif not var_exists: |
|
print( |
|
f"{adata_file_path} has no column attribute 'filter_pass'; tokenizing all cells." |
|
) |
|
filter_pass_loc = np.array([i for i in range(adata.shape[0])]) |
|
|
|
tokenized_cells = [] |
|
|
|
for i in range(0, len(filter_pass_loc), self.chunk_size): |
|
idx = filter_pass_loc[i : i + self.chunk_size] |
|
|
|
n_counts = adata[idx].obs["n_counts"].values[:, None] |
|
X_view0 = adata[idx, :].X |
|
X_view = X_view0[:, coding_miRNA_loc] |
|
X_norm = X_view / n_counts * target_sum / norm_factor_vector |
|
X_norm = sp.csr_matrix(X_norm) |
|
|
|
tokenized_cells += [ |
|
rank_genes(X_norm[i].data, coding_miRNA_tokens[X_norm[i].indices]) |
|
for i in range(X_norm.shape[0]) |
|
] |
|
|
|
|
|
if self.custom_attr_name_dict is not None: |
|
for k in file_cell_metadata.keys(): |
|
file_cell_metadata[k] += adata[idx].obs[k].tolist() |
|
else: |
|
file_cell_metadata = None |
|
|
|
return tokenized_cells, file_cell_metadata |
|
|
|
def tokenize_loom(self, loom_file_path, target_sum=10_000): |
|
if self.custom_attr_name_dict is not None: |
|
file_cell_metadata = { |
|
attr_key: [] for attr_key in self.custom_attr_name_dict.keys() |
|
} |
|
loom_file_path_original = loom_file_path |
|
|
|
dedup_filename = loom_file_path.with_name(loom_file_path.stem + "__dedup.loom") |
|
loom_file_path = sum_ensembl_ids( |
|
loom_file_path, |
|
self.collapse_gene_ids, |
|
self.gene_mapping_dict, |
|
self.gene_token_dict, |
|
file_format="loom", |
|
chunk_size=self.chunk_size, |
|
) |
|
|
|
with lp.connect(str(loom_file_path)) as data: |
|
|
|
coding_miRNA_loc = np.where( |
|
[self.genelist_dict.get(i, False) for i in data.ra["ensembl_id_collapsed"]] |
|
)[0] |
|
norm_factor_vector = np.array( |
|
[ |
|
self.gene_median_dict[i] |
|
for i in data.ra["ensembl_id_collapsed"][coding_miRNA_loc] |
|
] |
|
) |
|
coding_miRNA_ids = data.ra["ensembl_id_collapsed"][coding_miRNA_loc] |
|
coding_miRNA_tokens = np.array( |
|
[self.gene_token_dict[i] for i in coding_miRNA_ids] |
|
) |
|
|
|
|
|
try: |
|
data.ca["filter_pass"] |
|
except AttributeError: |
|
var_exists = False |
|
else: |
|
var_exists = True |
|
|
|
if var_exists: |
|
filter_pass_loc = np.where([i == 1 for i in data.ca["filter_pass"]])[0] |
|
elif not var_exists: |
|
print( |
|
f"{loom_file_path} has no column attribute 'filter_pass'; tokenizing all cells." |
|
) |
|
filter_pass_loc = np.array([i for i in range(data.shape[1])]) |
|
|
|
|
|
tokenized_cells = [] |
|
for _ix, _selection, view in data.scan( |
|
items=filter_pass_loc, axis=1, batch_size=self.chunk_size |
|
): |
|
|
|
subview = view.view[coding_miRNA_loc, :] |
|
|
|
|
|
|
|
subview_norm_array = ( |
|
subview[:, :] |
|
/ subview.ca.n_counts |
|
* target_sum |
|
/ norm_factor_vector[:, None] |
|
) |
|
|
|
tokenized_cells += [ |
|
tokenize_cell(subview_norm_array[:, i], coding_miRNA_tokens) |
|
for i in range(subview_norm_array.shape[1]) |
|
] |
|
|
|
|
|
if self.custom_attr_name_dict is not None: |
|
for k in file_cell_metadata.keys(): |
|
file_cell_metadata[k] += subview.ca[k].tolist() |
|
else: |
|
file_cell_metadata = None |
|
|
|
if str(dedup_filename) == str(loom_file_path): |
|
os.remove(str(dedup_filename)) |
|
|
|
with lp.connect(str(loom_file_path_original)) as data: |
|
if "ensembl_id_collapsed" in data.ra.keys(): |
|
del data.ra["ensembl_id_collapsed"] |
|
|
|
|
|
return tokenized_cells, file_cell_metadata |
|
|
|
def create_dataset( |
|
self, |
|
tokenized_cells, |
|
cell_metadata, |
|
use_generator=False, |
|
keep_uncropped_input_ids=False, |
|
): |
|
print("Creating dataset.") |
|
|
|
dataset_dict = {"input_ids": tokenized_cells} |
|
if self.custom_attr_name_dict is not None: |
|
dataset_dict.update(cell_metadata) |
|
|
|
|
|
if use_generator: |
|
|
|
def dict_generator(): |
|
for i in range(len(tokenized_cells)): |
|
yield {k: dataset_dict[k][i] for k in dataset_dict.keys()} |
|
|
|
output_dataset = Dataset.from_generator(dict_generator, num_proc=self.nproc) |
|
else: |
|
output_dataset = Dataset.from_dict(dataset_dict) |
|
|
|
def format_cell_features(example): |
|
|
|
if keep_uncropped_input_ids: |
|
example["input_ids_uncropped"] = example["input_ids"] |
|
example["length_uncropped"] = len(example["input_ids"]) |
|
|
|
|
|
if self.special_token: |
|
example["input_ids"] = example["input_ids"][ |
|
0 : self.model_input_size - 2 |
|
] |
|
example["input_ids"] = np.insert( |
|
example["input_ids"], 0, self.gene_token_dict.get("<cls>") |
|
) |
|
example["input_ids"] = np.insert( |
|
example["input_ids"], |
|
len(example["input_ids"]), |
|
self.gene_token_dict.get("<eos>"), |
|
) |
|
else: |
|
|
|
example["input_ids"] = example["input_ids"][0 : self.model_input_size] |
|
example["length"] = len(example["input_ids"]) |
|
|
|
return example |
|
|
|
output_dataset_truncated = output_dataset.map( |
|
format_cell_features, num_proc=self.nproc |
|
) |
|
return output_dataset_truncated |
|
|