Christina Theodoris
Correct order of state dict in in silico perturber stats and tensor dims of alt state emb in in silico perturber
3d06203
""" | |
Geneformer in silico perturber stats generator. | |
Usage: | |
from geneformer import InSilicoPerturberStats | |
ispstats = InSilicoPerturberStats(mode="goal_state_shift", | |
combos=0, | |
anchor_gene=None, | |
cell_states_to_model={"disease":(["dcm"],["ctrl"],["hcm"])}) | |
ispstats.get_stats("path/to/input_data", | |
None, | |
"path/to/output_directory", | |
"output_prefix") | |
""" | |
import os | |
import logging | |
import numpy as np | |
import pandas as pd | |
import pickle | |
import random | |
import statsmodels.stats.multitest as smt | |
from pathlib import Path | |
from scipy.stats import ranksums | |
from sklearn.mixture import GaussianMixture | |
from tqdm.notebook import trange, tqdm | |
from .tokenizer import TOKEN_DICTIONARY_FILE | |
GENE_NAME_ID_DICTIONARY_FILE = Path(__file__).parent / "gene_name_id_dict.pkl" | |
logger = logging.getLogger(__name__) | |
# invert dictionary keys/values | |
def invert_dict(dictionary): | |
return {v: k for k, v in dictionary.items()} | |
# read raw dictionary files | |
def read_dictionaries(dir, cell_or_gene_emb, anchor_token): | |
file_found = 0 | |
file_path_list = [] | |
dict_list = [] | |
for file in os.listdir(dir): | |
# process only _raw.pickle files | |
if file.endswith("_raw.pickle"): | |
file_found = 1 | |
file_path_list += [f"{dir}/{file}"] | |
for file_path in tqdm(file_path_list): | |
with open(file_path, "rb") as fp: | |
cos_sims_dict = pickle.load(fp) | |
if cell_or_gene_emb == "cell": | |
cell_emb_dict = {k: v for k, | |
v in cos_sims_dict.items() if v and "cell_emb" in k} | |
dict_list += [cell_emb_dict] | |
elif cell_or_gene_emb == "gene": | |
gene_emb_dict = {k: v for k, | |
v in cos_sims_dict.items() if v and anchor_token == k[0]} | |
dict_list += [gene_emb_dict] | |
if file_found == 0: | |
logger.error( | |
"No raw data for processing found within provided directory. " \ | |
"Please ensure data files end with '_raw.pickle'.") | |
raise | |
return dict_list | |
# get complete gene list | |
def get_gene_list(dict_list,mode): | |
if mode == "cell": | |
position = 0 | |
elif mode == "gene": | |
position = 1 | |
gene_set = set() | |
for dict_i in dict_list: | |
gene_set.update([k[position] for k, v in dict_i.items() if v]) | |
gene_list = list(gene_set) | |
if mode == "gene": | |
gene_list.remove("cell_emb") | |
gene_list.sort() | |
return gene_list | |
def n_detections(token, dict_list, mode, anchor_token): | |
cos_sim_megalist = [] | |
for dict_i in dict_list: | |
if mode == "cell": | |
cos_sim_megalist += dict_i.get((token, "cell_emb"),[]) | |
elif mode == "gene": | |
cos_sim_megalist += dict_i.get((anchor_token, token),[]) | |
return len(cos_sim_megalist) | |
def get_fdr(pvalues): | |
return list(smt.multipletests(pvalues, alpha=0.05, method="fdr_bh")[1]) | |
def get_impact_component(test_value, gaussian_mixture_model): | |
impact_border = gaussian_mixture_model.means_[0][0] | |
nonimpact_border = gaussian_mixture_model.means_[1][0] | |
if test_value > nonimpact_border: | |
impact_component = 0 | |
elif test_value < impact_border: | |
impact_component = 1 | |
else: | |
impact_component_raw = gaussian_mixture_model.predict([[test_value]])[0] | |
if impact_component_raw == 1: | |
impact_component = 0 | |
elif impact_component_raw == 0: | |
impact_component = 1 | |
return impact_component | |
# stats comparing cos sim shifts towards goal state of test perturbations vs random perturbations | |
def isp_stats_to_goal_state(cos_sims_df, dict_list, cell_states_to_model): | |
cell_state_key = list(cell_states_to_model.keys())[0] | |
if cell_states_to_model[cell_state_key][2] == []: | |
alt_end_state_exists = False | |
elif (len(cell_states_to_model[cell_state_key][2]) > 0) and (cell_states_to_model[cell_state_key][2] != [None]): | |
alt_end_state_exists = True | |
random_tuples = [] | |
for i in trange(cos_sims_df.shape[0]): | |
token = cos_sims_df["Gene"][i] | |
for dict_i in dict_list: | |
random_tuples += dict_i.get((token, "cell_emb"),[]) | |
if alt_end_state_exists == False: | |
goal_end_random_megalist = [goal_end for start_state,goal_end in random_tuples] | |
elif alt_end_state_exists == True: | |
goal_end_random_megalist = [goal_end for start_state,goal_end,alt_end in random_tuples] | |
alt_end_random_megalist = [alt_end for start_state,goal_end,alt_end in random_tuples] | |
# downsample to improve speed of ranksums | |
if len(goal_end_random_megalist) > 100_000: | |
random.seed(42) | |
goal_end_random_megalist = random.sample(goal_end_random_megalist, k=100_000) | |
if alt_end_state_exists == True: | |
if len(alt_end_random_megalist) > 100_000: | |
random.seed(42) | |
alt_end_random_megalist = random.sample(alt_end_random_megalist, k=100_000) | |
names=["Gene", | |
"Gene_name", | |
"Ensembl_ID", | |
"Shift_to_goal_end", | |
"Shift_to_alt_end", | |
"Goal_end_vs_random_pval", | |
"Alt_end_vs_random_pval"] | |
if alt_end_state_exists == False: | |
names.remove("Shift_to_alt_end") | |
names.remove("Alt_end_vs_random_pval") | |
cos_sims_full_df = pd.DataFrame(columns=names) | |
for i in trange(cos_sims_df.shape[0]): | |
token = cos_sims_df["Gene"][i] | |
name = cos_sims_df["Gene_name"][i] | |
ensembl_id = cos_sims_df["Ensembl_ID"][i] | |
cos_shift_data = [] | |
for dict_i in dict_list: | |
cos_shift_data += dict_i.get((token, "cell_emb"),[]) | |
if alt_end_state_exists == False: | |
goal_end_cos_sim_megalist = [goal_end for start_state,goal_end in cos_shift_data] | |
elif alt_end_state_exists == True: | |
goal_end_cos_sim_megalist = [goal_end for start_state,goal_end,alt_end in cos_shift_data] | |
alt_end_cos_sim_megalist = [alt_end for start_state,goal_end,alt_end in cos_shift_data] | |
mean_alt_end = np.mean(alt_end_cos_sim_megalist) | |
pval_alt_end = ranksums(alt_end_random_megalist,alt_end_cos_sim_megalist).pvalue | |
mean_goal_end = np.mean(goal_end_cos_sim_megalist) | |
pval_goal_end = ranksums(goal_end_random_megalist,goal_end_cos_sim_megalist).pvalue | |
if alt_end_state_exists == False: | |
data_i = [token, | |
name, | |
ensembl_id, | |
mean_goal_end, | |
pval_goal_end] | |
elif alt_end_state_exists == True: | |
data_i = [token, | |
name, | |
ensembl_id, | |
mean_goal_end, | |
mean_alt_end, | |
pval_goal_end, | |
pval_alt_end] | |
cos_sims_df_i = pd.DataFrame(dict(zip(names,data_i)),index=[i]) | |
cos_sims_full_df = pd.concat([cos_sims_full_df,cos_sims_df_i]) | |
cos_sims_full_df["Goal_end_FDR"] = get_fdr(list(cos_sims_full_df["Goal_end_vs_random_pval"])) | |
if alt_end_state_exists == True: | |
cos_sims_full_df["Alt_end_FDR"] = get_fdr(list(cos_sims_full_df["Alt_end_vs_random_pval"])) | |
# quantify number of detections of each gene | |
cos_sims_full_df["N_Detections"] = [n_detections(i, dict_list, "cell", None) for i in cos_sims_full_df["Gene"]] | |
# sort by shift to desired state | |
cos_sims_full_df = cos_sims_full_df.sort_values(by=["Shift_to_goal_end", | |
"Goal_end_FDR"], | |
ascending=[False,True]) | |
return cos_sims_full_df | |
# stats comparing cos sim shifts of test perturbations vs null distribution | |
def isp_stats_vs_null(cos_sims_df, dict_list, null_dict_list): | |
cos_sims_full_df = cos_sims_df.copy() | |
cos_sims_full_df["Test_avg_shift"] = np.zeros(cos_sims_df.shape[0], dtype=float) | |
cos_sims_full_df["Null_avg_shift"] = np.zeros(cos_sims_df.shape[0], dtype=float) | |
cos_sims_full_df["Test_vs_null_avg_shift"] = np.zeros(cos_sims_df.shape[0], dtype=float) | |
cos_sims_full_df["Test_vs_null_pval"] = np.zeros(cos_sims_df.shape[0], dtype=float) | |
cos_sims_full_df["Test_vs_null_FDR"] = np.zeros(cos_sims_df.shape[0], dtype=float) | |
cos_sims_full_df["N_Detections_test"] = np.zeros(cos_sims_df.shape[0], dtype="uint32") | |
cos_sims_full_df["N_Detections_null"] = np.zeros(cos_sims_df.shape[0], dtype="uint32") | |
for i in trange(cos_sims_df.shape[0]): | |
token = cos_sims_df["Gene"][i] | |
test_shifts = [] | |
null_shifts = [] | |
for dict_i in dict_list: | |
test_shifts += dict_i.get((token, "cell_emb"),[]) | |
for dict_i in null_dict_list: | |
null_shifts += dict_i.get((token, "cell_emb"),[]) | |
cos_sims_full_df.loc[i, "Test_avg_shift"] = np.mean(test_shifts) | |
cos_sims_full_df.loc[i, "Null_avg_shift"] = np.mean(null_shifts) | |
cos_sims_full_df.loc[i, "Test_vs_null_avg_shift"] = np.mean(test_shifts)-np.mean(null_shifts) | |
cos_sims_full_df.loc[i, "Test_vs_null_pval"] = ranksums(test_shifts, | |
null_shifts, nan_policy="omit").pvalue | |
cos_sims_full_df.loc[i, "N_Detections_test"] = len(test_shifts) | |
cos_sims_full_df.loc[i, "N_Detections_null"] = len(null_shifts) | |
cos_sims_full_df["Test_vs_null_FDR"] = get_fdr(cos_sims_full_df["Test_vs_null_pval"]) | |
cos_sims_full_df = cos_sims_full_df.sort_values(by=["Test_vs_null_avg_shift", | |
"Test_vs_null_FDR"], | |
ascending=[False,True]) | |
return cos_sims_full_df | |
# stats for identifying perturbations with largest effect within a given set of cells | |
# fits a mixture model to 2 components (impact vs. non-impact) and | |
# reports the most likely component for each test perturbation | |
# Note: because assumes given perturbation has a consistent effect in the cells tested, | |
# we recommend only using the mixture model strategy with uniform cell populations | |
def isp_stats_mixture_model(cos_sims_df, dict_list, combos, anchor_token): | |
names=["Gene", | |
"Gene_name", | |
"Ensembl_ID"] | |
if combos == 0: | |
names += ["Test_avg_shift"] | |
elif combos == 1: | |
names += ["Anchor_shift", | |
"Test_token_shift", | |
"Sum_of_indiv_shifts", | |
"Combo_shift", | |
"Combo_minus_sum_shift"] | |
names += ["Impact_component", | |
"Impact_component_percent"] | |
cos_sims_full_df = pd.DataFrame(columns=names) | |
avg_values = [] | |
gene_names = [] | |
for i in trange(cos_sims_df.shape[0]): | |
token = cos_sims_df["Gene"][i] | |
name = cos_sims_df["Gene_name"][i] | |
ensembl_id = cos_sims_df["Ensembl_ID"][i] | |
cos_shift_data = [] | |
for dict_i in dict_list: | |
if (combos == 0) and (anchor_token is not None): | |
cos_shift_data += dict_i.get((anchor_token, token),[]) | |
else: | |
cos_shift_data += dict_i.get((token, "cell_emb"),[]) | |
# Extract values for current gene | |
if combos == 0: | |
test_values = cos_shift_data | |
elif combos == 1: | |
test_values = [] | |
for tup in cos_shift_data: | |
test_values.append(tup[2]) | |
if len(test_values) > 0: | |
avg_value = np.mean(test_values) | |
avg_values.append(avg_value) | |
gene_names.append(name) | |
# fit Gaussian mixture model to dataset of mean for each gene | |
avg_values_to_fit = np.array(avg_values).reshape(-1, 1) | |
gm = GaussianMixture(n_components=2, random_state=0).fit(avg_values_to_fit) | |
for i in trange(cos_sims_df.shape[0]): | |
token = cos_sims_df["Gene"][i] | |
name = cos_sims_df["Gene_name"][i] | |
ensembl_id = cos_sims_df["Ensembl_ID"][i] | |
cos_shift_data = [] | |
for dict_i in dict_list: | |
if (combos == 0) and (anchor_token is not None): | |
cos_shift_data += dict_i.get((anchor_token, token),[]) | |
else: | |
cos_shift_data += dict_i.get((token, "cell_emb"),[]) | |
if combos == 0: | |
mean_test = np.mean(cos_shift_data) | |
impact_components = [get_impact_component(value,gm) for value in cos_shift_data] | |
elif combos == 1: | |
anchor_cos_sim_megalist = [anchor for anchor,token,combo in cos_shift_data] | |
token_cos_sim_megalist = [token for anchor,token,combo in cos_shift_data] | |
anchor_plus_token_cos_sim_megalist = [1-((1-anchor)+(1-token)) for anchor,token,combo in cos_shift_data] | |
combo_anchor_token_cos_sim_megalist = [combo for anchor,token,combo in cos_shift_data] | |
combo_minus_sum_cos_sim_megalist = [combo-(1-((1-anchor)+(1-token))) for anchor,token,combo in cos_shift_data] | |
mean_anchor = np.mean(anchor_cos_sim_megalist) | |
mean_token = np.mean(token_cos_sim_megalist) | |
mean_sum = np.mean(anchor_plus_token_cos_sim_megalist) | |
mean_test = np.mean(combo_anchor_token_cos_sim_megalist) | |
mean_combo_minus_sum = np.mean(combo_minus_sum_cos_sim_megalist) | |
impact_components = [get_impact_component(value,gm) for value in combo_anchor_token_cos_sim_megalist] | |
impact_component = get_impact_component(mean_test,gm) | |
impact_component_percent = np.mean(impact_components)*100 | |
data_i = [token, | |
name, | |
ensembl_id] | |
if combos == 0: | |
data_i += [mean_test] | |
elif combos == 1: | |
data_i += [mean_anchor, | |
mean_token, | |
mean_sum, | |
mean_test, | |
mean_combo_minus_sum] | |
data_i += [impact_component, | |
impact_component_percent] | |
cos_sims_df_i = pd.DataFrame(dict(zip(names,data_i)),index=[i]) | |
cos_sims_full_df = pd.concat([cos_sims_full_df,cos_sims_df_i]) | |
# quantify number of detections of each gene | |
cos_sims_full_df["N_Detections"] = [n_detections(i, | |
dict_list, | |
"gene", | |
anchor_token) for i in cos_sims_full_df["Gene"]] | |
if combos == 0: | |
cos_sims_full_df = cos_sims_full_df.sort_values(by=["Impact_component", | |
"Test_avg_shift"], | |
ascending=[False,True]) | |
elif combos == 1: | |
cos_sims_full_df = cos_sims_full_df.sort_values(by=["Impact_component", | |
"Combo_minus_sum_shift"], | |
ascending=[False,True]) | |
return cos_sims_full_df | |
class InSilicoPerturberStats: | |
valid_option_dict = { | |
"mode": {"goal_state_shift","vs_null","mixture_model"}, | |
"combos": {0,1}, | |
"anchor_gene": {None, str}, | |
"cell_states_to_model": {None, dict}, | |
} | |
def __init__( | |
self, | |
mode="mixture_model", | |
combos=0, | |
anchor_gene=None, | |
cell_states_to_model=None, | |
token_dictionary_file=TOKEN_DICTIONARY_FILE, | |
gene_name_id_dictionary_file=GENE_NAME_ID_DICTIONARY_FILE, | |
): | |
""" | |
Initialize in silico perturber stats generator. | |
Parameters | |
---------- | |
mode : {"goal_state_shift","vs_null","mixture_model"} | |
Type of stats. | |
"goal_state_shift": perturbation vs. random for desired cell state shift | |
"vs_null": perturbation vs. null from provided null distribution dataset | |
"mixture_model": perturbation in impact vs. no impact component of mixture model (no goal direction) | |
combos : {0,1,2} | |
Whether to perturb genes individually (0), in pairs (1), or in triplets (2). | |
anchor_gene : None, str | |
ENSEMBL ID of gene to use as anchor in combination perturbations or in testing effect on downstream genes. | |
For example, if combos=1 and anchor_gene="ENSG00000136574": | |
analyzes data for anchor gene perturbed in combination with each other gene. | |
However, if combos=0 and anchor_gene="ENSG00000136574": | |
analyzes data for the effect of anchor gene's perturbation on the embedding of each other gene. | |
cell_states_to_model: None, dict | |
Cell states to model if testing perturbations that achieve goal state change. | |
Single-item dictionary with key being cell attribute (e.g. "disease"). | |
Value is tuple of three lists indicating start state, goal end state, and alternate possible end states. | |
If no alternate possible end states, third list should be empty (i.e. the third list should be []). | |
token_dictionary_file : Path | |
Path to pickle file containing token dictionary (Ensembl ID:token). | |
gene_name_id_dictionary_file : Path | |
Path to pickle file containing gene name to ID dictionary (gene name:Ensembl ID). | |
""" | |
self.mode = mode | |
self.combos = combos | |
self.anchor_gene = anchor_gene | |
self.cell_states_to_model = cell_states_to_model | |
self.validate_options() | |
# load token dictionary (Ensembl IDs:token) | |
with open(token_dictionary_file, "rb") as f: | |
self.gene_token_dict = pickle.load(f) | |
# load gene name dictionary (gene name:Ensembl ID) | |
with open(gene_name_id_dictionary_file, "rb") as f: | |
self.gene_name_id_dict = pickle.load(f) | |
if anchor_gene is None: | |
self.anchor_token = None | |
else: | |
self.anchor_token = self.gene_token_dict[self.anchor_gene] | |
def validate_options(self): | |
for attr_name,valid_options in self.valid_option_dict.items(): | |
attr_value = self.__dict__[attr_name] | |
if type(attr_value) not in {list, dict}: | |
if attr_name in {"anchor_gene"}: | |
continue | |
elif attr_value in valid_options: | |
continue | |
valid_type = False | |
for option in valid_options: | |
if (option in [int,list,dict]) and isinstance(attr_value, option): | |
valid_type = True | |
break | |
if valid_type: | |
continue | |
logger.error( | |
f"Invalid option for {attr_name}. " \ | |
f"Valid options for {attr_name}: {valid_options}" | |
) | |
raise | |
if self.cell_states_to_model is not None: | |
if len(self.cell_states_to_model.items()) == 1: | |
for key,value in self.cell_states_to_model.items(): | |
if (len(value) == 3) and isinstance(value, tuple): | |
if isinstance(value[0],list) and isinstance(value[1],list) and isinstance(value[2],list): | |
if len(value[0]) == 1 and len(value[1]) == 1: | |
all_values = value[0]+value[1]+value[2] | |
if len(all_values) == len(set(all_values)): | |
continue | |
else: | |
logger.error( | |
"Cell states to model must be a single-item dictionary with " \ | |
"key being cell attribute (e.g. 'disease') and value being " \ | |
"tuple of three lists indicating start state, goal end state, and alternate possible end states. " \ | |
"Values should all be unique. " \ | |
"For example: {'disease':(['start_state'],['ctrl'],['alt_end'])}") | |
raise | |
if self.anchor_gene is not None: | |
self.anchor_gene = None | |
logger.warning( | |
"anchor_gene set to None. " \ | |
"Currently, anchor gene not available " \ | |
"when modeling multiple cell states.") | |
if self.combos > 0: | |
if self.anchor_gene is None: | |
logger.error( | |
"Currently, stats are only supported for combination " \ | |
"in silico perturbation run with anchor gene. Please add " \ | |
"anchor gene when using with combos > 0. ") | |
raise | |
def get_stats(self, | |
input_data_directory, | |
null_dist_data_directory, | |
output_directory, | |
output_prefix): | |
""" | |
Get stats for in silico perturbation data and save as results in output_directory. | |
Parameters | |
---------- | |
input_data_directory : Path | |
Path to directory containing cos_sim dictionary inputs | |
null_dist_data_directory : Path | |
Path to directory containing null distribution cos_sim dictionary inputs | |
output_directory : Path | |
Path to directory where perturbation data will be saved as .csv | |
output_prefix : str | |
Prefix for output .dataset | |
Outputs | |
---------- | |
Definition of possible columns in .csv output file. | |
Of note, not all columns will be present in all output files. | |
Some columns are specific to particular perturbation modes. | |
"Gene": gene token | |
"Gene_name": gene name | |
"Ensembl_ID": gene Ensembl ID | |
"N_Detections": number of cells in which each gene or gene combination was detected in the input dataset | |
"Shift_to_goal_end": cosine shift from start state towards goal end state in response to given perturbation | |
"Shift_to_alt_end": cosine shift from start state towards alternate end state in response to given perturbation | |
"Goal_end_vs_random_pval": pvalue of cosine shift from start state towards goal end state by Wilcoxon | |
pvalue compares shift caused by perturbing given gene compared to random genes | |
"Alt_end_vs_random_pval": pvalue of cosine shift from start state towards alternate end state by Wilcoxon | |
pvalue compares shift caused by perturbing given gene compared to random genes | |
"Goal_end_FDR": Benjamini-Hochberg correction of "Goal_end_vs_random_pval" | |
"Alt_end_FDR": Benjamini-Hochberg correction of "Alt_end_vs_random_pval" | |
"Test_avg_shift": cosine shift in response to given perturbation in cells from test distribution | |
"Null_avg_shift": cosine shift in response to given perturbation in cells from null distribution (e.g. random cells) | |
"Test_vs_null_avg_shift": difference in cosine shift in cells from test vs. null distribution | |
(i.e. "Test_avg_shift" minus "Null_avg_shift") | |
"Test_vs_null_pval": pvalue of cosine shift in test vs. null distribution | |
"Test_vs_null_FDR": Benjamini-Hochberg correction of "Test_vs_null_pval" | |
"N_Detections_test": "N_Detections" in cells from test distribution | |
"N_Detections_null": "N_Detections" in cells from null distribution | |
"Anchor_shift": cosine shift in response to given perturbation of anchor gene | |
"Test_token_shift": cosine shift in response to given perturbation of test gene | |
"Sum_of_indiv_shifts": sum of cosine shifts in response to individually perturbing test and anchor genes | |
"Combo_shift": cosine shift in response to given perturbation of both anchor and test gene(s) in combination | |
"Combo_minus_sum_shift": difference of cosine shifts in response combo perturbation vs. sum of individual perturbations | |
(i.e. "Combo_shift" minus "Sum_of_indiv_shifts") | |
"Impact_component": whether the given perturbation was modeled to be within the impact component by the mixture model | |
1: within impact component; 0: not within impact component | |
"Impact_component_percent": percent of cells in which given perturbation was modeled to be within impact component | |
""" | |
if self.mode not in ["goal_state_shift", "vs_null", "mixture_model"]: | |
logger.error( | |
"Currently, only modes available are stats for goal_state_shift, " \ | |
"vs_null (comparing to null distribution), and " \ | |
"mixture_model (fitting mixture model for perturbations with or without impact.") | |
raise | |
self.gene_token_id_dict = invert_dict(self.gene_token_dict) | |
self.gene_id_name_dict = invert_dict(self.gene_name_id_dict) | |
# obtain total gene list | |
if (self.combos == 0) and (self.anchor_token is not None): | |
# cos sim data for effect of gene perturbation on the embedding of each other gene | |
dict_list = read_dictionaries(input_data_directory, "gene", self.anchor_token) | |
gene_list = get_gene_list(dict_list, "gene") | |
else: | |
# cos sim data for effect of gene perturbation on the embedding of each cell | |
dict_list = read_dictionaries(input_data_directory, "cell", self.anchor_token) | |
gene_list = get_gene_list(dict_list, "cell") | |
# initiate results dataframe | |
cos_sims_df_initial = pd.DataFrame({"Gene": gene_list, | |
"Gene_name": [self.token_to_gene_name(item) \ | |
for item in gene_list], \ | |
"Ensembl_ID": [self.gene_token_id_dict[genes[1]] \ | |
if isinstance(genes,tuple) else \ | |
self.gene_token_id_dict[genes] \ | |
for genes in gene_list]}, \ | |
index=[i for i in range(len(gene_list))]) | |
if self.mode == "goal_state_shift": | |
cos_sims_df = isp_stats_to_goal_state(cos_sims_df_initial, dict_list, self.cell_states_to_model) | |
elif self.mode == "vs_null": | |
null_dict_list = read_dictionaries(null_dist_data_directory, "cell", self.anchor_token) | |
cos_sims_df = isp_stats_vs_null(cos_sims_df_initial, dict_list, null_dict_list) | |
elif self.mode == "mixture_model": | |
cos_sims_df = isp_stats_mixture_model(cos_sims_df_initial, dict_list, self.combos, self.anchor_token) | |
# save perturbation stats to output_path | |
output_path = (Path(output_directory) / output_prefix).with_suffix(".csv") | |
cos_sims_df.to_csv(output_path) | |
def token_to_gene_name(self, item): | |
if isinstance(item,int): | |
return self.gene_id_name_dict.get(self.gene_token_id_dict.get(item, np.nan), np.nan) | |
if isinstance(item,tuple): | |
return tuple([self.gene_id_name_dict.get(self.gene_token_id_dict.get(i, np.nan), np.nan) for i in item]) | |