David Wen
added quality of life improvements; fixed gene similarities with cell_states_to_model
4b4547f
""" | |
Geneformer in silico perturber. | |
**Usage:** | |
.. code-block :: python | |
>>> from geneformer import InSilicoPerturber | |
>>> isp = InSilicoPerturber(perturb_type="delete", | |
... perturb_rank_shift=None, | |
... genes_to_perturb="all", | |
... model_type="CellClassifier", | |
... num_classes=0, | |
... emb_mode="cell", | |
... filter_data={"cell_type":["cardiomyocyte"]}, | |
... cell_states_to_model={"state_key": "disease", "start_state": "dcm", "goal_state": "nf", "alt_states": ["hcm", "other1", "other2"]}, | |
... state_embs_dict ={"nf": emb_nf, "hcm": emb_hcm, "dcm": emb_dcm, "other1": emb_other1, "other2": emb_other2}, | |
... max_ncells=None, | |
... emb_layer=0, | |
... forward_batch_size=100, | |
... nproc=16) | |
>>> isp.perturb_data("path/to/model", | |
... "path/to/input_data", | |
... "path/to/output_directory", | |
... "output_prefix") | |
**Description:** | |
| Performs in silico perturbation (e.g. deletion or overexpression) of defined set of genes or all genes in sample of cells. | |
| Outputs impact of perturbation on cell or gene embeddings. | |
| Output files are analyzed with ``in_silico_perturber_stats``. | |
""" | |
import logging | |
# imports | |
import os | |
import pickle | |
from collections import defaultdict | |
from typing import List | |
from multiprocess import set_start_method | |
import seaborn as sns | |
import torch | |
from datasets import Dataset | |
from tqdm.auto import trange | |
from . import perturber_utils as pu | |
from .emb_extractor import get_embs | |
from .perturber_utils import TOKEN_DICTIONARY_FILE | |
sns.set() | |
logger = logging.getLogger(__name__) | |
class InSilicoPerturber: | |
valid_option_dict = { | |
"perturb_type": {"delete", "overexpress", "inhibit", "activate"}, | |
"perturb_rank_shift": {None, 1, 2, 3}, | |
"genes_to_perturb": {"all", list}, | |
"combos": {0, 1}, | |
"anchor_gene": {None, str}, | |
"model_type": {"Pretrained", "GeneClassifier", "CellClassifier"}, | |
"num_classes": {int}, | |
"emb_mode": {"cell", "cell_and_gene"}, | |
"cell_emb_style": {"mean_pool"}, | |
"filter_data": {None, dict}, | |
"cell_states_to_model": {None, dict}, | |
"state_embs_dict": {None, dict}, | |
"max_ncells": {None, int}, | |
"cell_inds_to_perturb": {"all", dict}, | |
"emb_layer": {-1, 0}, | |
"forward_batch_size": {int}, | |
"nproc": {int}, | |
} | |
def __init__( | |
self, | |
perturb_type="delete", | |
perturb_rank_shift=None, | |
genes_to_perturb="all", | |
combos=0, | |
anchor_gene=None, | |
model_type="Pretrained", | |
num_classes=0, | |
emb_mode="cell", | |
cell_emb_style="mean_pool", | |
filter_data=None, | |
cell_states_to_model=None, | |
state_embs_dict=None, | |
max_ncells=None, | |
cell_inds_to_perturb="all", | |
emb_layer=-1, | |
forward_batch_size=100, | |
nproc=4, | |
token_dictionary_file=TOKEN_DICTIONARY_FILE, | |
): | |
""" | |
Initialize in silico perturber. | |
**Parameters:** | |
perturb_type : {"delete", "overexpress", "inhibit", "activate"} | |
| Type of perturbation. | |
| "delete": delete gene from rank value encoding | |
| "overexpress": move gene to front of rank value encoding | |
| *(TBA)* "inhibit": move gene to lower quartile of rank value encoding | |
| *(TBA)* "activate": move gene to higher quartile of rank value encoding | |
*(TBA)* perturb_rank_shift : None, {1,2,3} | |
| Number of quartiles by which to shift rank of gene. | |
| For example, if perturb_type="activate" and perturb_rank_shift=1: | |
| genes in 4th quartile will move to middle of 3rd quartile. | |
| genes in 3rd quartile will move to middle of 2nd quartile. | |
| genes in 2nd quartile will move to middle of 1st quartile. | |
| genes in 1st quartile will move to front of rank value encoding. | |
| For example, if perturb_type="inhibit" and perturb_rank_shift=2: | |
| genes in 1st quartile will move to middle of 3rd quartile. | |
| genes in 2nd quartile will move to middle of 4th quartile. | |
| genes in 3rd or 4th quartile will move to bottom of rank value encoding. | |
genes_to_perturb : "all", list | |
| Default is perturbing each gene detected in each cell in the dataset. | |
| Otherwise, may provide a list of ENSEMBL IDs of genes to perturb. | |
| If gene list is provided, then perturber will only test perturbing them all together | |
| (rather than testing each possible combination of the provided genes). | |
combos : {0,1} | |
| Whether to perturb genes individually (0) or in pairs (1). | |
anchor_gene : None, str | |
| ENSEMBL ID of gene to use as anchor in combination perturbations. | |
| For example, if combos=1 and anchor_gene="ENSG00000148400": | |
| anchor gene will be perturbed in combination with each other gene. | |
model_type : {"Pretrained", "GeneClassifier", "CellClassifier"} | |
| Whether model is the pretrained Geneformer or a fine-tuned gene or cell classifier. | |
num_classes : int | |
| If model is a gene or cell classifier, specify number of classes it was trained to classify. | |
| For the pretrained Geneformer model, number of classes is 0 as it is not a classifier. | |
emb_mode : {"cell", "cell_and_gene"} | |
| Whether to output impact of perturbation on cell and/or gene embeddings. | |
| Gene embedding shifts only available as compared to original cell, not comparing to goal state. | |
cell_emb_style : "mean_pool" | |
| Method for summarizing cell embeddings. | |
| Currently only option is mean pooling of gene embeddings for given cell. | |
filter_data : None, dict | |
| Default is to use all input data for in silico perturbation study. | |
| Otherwise, dictionary specifying .dataset column name and list of values to filter by. | |
cell_states_to_model : None, dict | |
| Cell states to model if testing perturbations that achieve goal state change. | |
| Four-item dictionary with keys: state_key, start_state, goal_state, and alt_states | |
| state_key: key specifying name of column in .dataset that defines the start/goal states | |
| start_state: value in the state_key column that specifies the start state | |
| goal_state: value in the state_key column taht specifies the goal end state | |
| alt_states: list of values in the state_key column that specify the alternate end states | |
| For example: {"state_key": "disease", | |
| "start_state": "dcm", | |
| "goal_state": "nf", | |
| "alt_states": ["hcm", "other1", "other2"]} | |
state_embs_dict : None, dict | |
| Embedding positions of each cell state to model shifts from/towards (e.g. mean or median). | |
| Dictionary with keys specifying each possible cell state to model. | |
| Values are target embedding positions as torch.tensor. | |
| For example: {"nf": emb_nf, | |
| "hcm": emb_hcm, | |
| "dcm": emb_dcm, | |
| "other1": emb_other1, | |
| "other2": emb_other2} | |
max_ncells : None, int | |
| Maximum number of cells to test. | |
| If None, will test all cells. | |
cell_inds_to_perturb : "all", list | |
| Default is perturbing each cell in the dataset. | |
| Otherwise, may provide a dict of indices of cells to perturb with keys start_ind and end_ind. | |
| start_ind: the first index to perturb. | |
| end_ind: the last index to perturb (exclusive). | |
| Indices will be selected *after* the filter_data criteria and sorting. | |
| Useful for splitting extremely large datasets across separate GPUs. | |
emb_layer : {-1, 0} | |
| Embedding layer to use for quantification. | |
| 0: last layer (recommended for questions closely tied to model's training objective) | |
| -1: 2nd to last layer (recommended for questions requiring more general representations) | |
forward_batch_size : int | |
| Batch size for forward pass. | |
nproc : int | |
| Number of CPU processes to use. | |
token_dictionary_file : Path | |
| Path to pickle file containing token dictionary (Ensembl ID:token). | |
""" | |
try: | |
set_start_method("spawn") | |
except RuntimeError: | |
pass | |
self.perturb_type = perturb_type | |
self.perturb_rank_shift = perturb_rank_shift | |
self.genes_to_perturb = genes_to_perturb | |
self.combos = combos | |
self.anchor_gene = anchor_gene | |
if self.genes_to_perturb == "all": | |
self.perturb_group = False | |
else: | |
self.perturb_group = True | |
if (self.anchor_gene is not None) or (self.combos != 0): | |
self.anchor_gene = None | |
self.combos = 0 | |
logger.warning( | |
"anchor_gene set to None and combos set to 0. " | |
"If providing list of genes to perturb, " | |
"list of genes_to_perturb will be perturbed together, " | |
"without anchor gene or combinations." | |
) | |
self.model_type = model_type | |
self.num_classes = num_classes | |
self.emb_mode = emb_mode | |
self.cell_emb_style = cell_emb_style | |
self.filter_data = filter_data | |
self.cell_states_to_model = cell_states_to_model | |
self.state_embs_dict = state_embs_dict | |
self.max_ncells = max_ncells | |
self.cell_inds_to_perturb = cell_inds_to_perturb | |
self.emb_layer = emb_layer | |
self.forward_batch_size = forward_batch_size | |
self.nproc = nproc | |
self.validate_options() | |
# load token dictionary (Ensembl IDs:token) | |
with open(token_dictionary_file, "rb") as f: | |
self.gene_token_dict = pickle.load(f) | |
self.pad_token_id = self.gene_token_dict.get("<pad>") | |
if self.anchor_gene is None: | |
self.anchor_token = None | |
else: | |
try: | |
self.anchor_token = [self.gene_token_dict[self.anchor_gene]] | |
except KeyError: | |
logger.error(f"Anchor gene {self.anchor_gene} not in token dictionary.") | |
raise | |
if self.genes_to_perturb == "all": | |
self.tokens_to_perturb = "all" | |
else: | |
missing_genes = [ | |
gene | |
for gene in self.genes_to_perturb | |
if gene not in self.gene_token_dict.keys() | |
] | |
if len(missing_genes) == len(self.genes_to_perturb): | |
logger.error( | |
"None of the provided genes to perturb are in token dictionary." | |
) | |
raise | |
elif len(missing_genes) > 0: | |
logger.warning( | |
f"Genes to perturb {missing_genes} are not in token dictionary." | |
) | |
self.tokens_to_perturb = [ | |
self.gene_token_dict.get(gene) for gene in self.genes_to_perturb | |
] | |
def validate_options(self): | |
# first disallow options under development | |
if self.perturb_type in ["inhibit", "activate"]: | |
logger.error( | |
"In silico inhibition and activation currently under development. " | |
"Current valid options for 'perturb_type': 'delete' or 'overexpress'" | |
) | |
raise | |
if (self.combos > 0) and (self.anchor_gene is None): | |
logger.error( | |
"Combination perturbation without anchor gene is currently under development. " | |
"Currently, must provide anchor gene for combination perturbation." | |
) | |
raise | |
# confirm arguments are within valid options and compatible with each other | |
for attr_name, valid_options in self.valid_option_dict.items(): | |
attr_value = self.__dict__[attr_name] | |
if type(attr_value) not in {list, dict}: | |
if attr_value in valid_options: | |
continue | |
if attr_name in ["anchor_gene"]: | |
if type(attr_name) in {str}: | |
continue | |
valid_type = False | |
for option in valid_options: | |
if (option in [bool, int, list, dict]) and isinstance( | |
attr_value, option | |
): | |
valid_type = True | |
break | |
if valid_type: | |
continue | |
logger.error( | |
f"Invalid option for {attr_name}. " | |
f"Valid options for {attr_name}: {valid_options}" | |
) | |
raise | |
if self.perturb_type in ["delete", "overexpress"]: | |
if self.perturb_rank_shift is not None: | |
if self.perturb_type == "delete": | |
logger.warning( | |
"perturb_rank_shift set to None. " | |
"If perturb type is delete then gene is deleted entirely " | |
"rather than shifted by quartile" | |
) | |
elif self.perturb_type == "overexpress": | |
logger.warning( | |
"perturb_rank_shift set to None. " | |
"If perturb type is overexpress then gene is moved to front " | |
"of rank value encoding rather than shifted by quartile" | |
) | |
self.perturb_rank_shift = None | |
if (self.anchor_gene is not None) and (self.emb_mode == "cell_and_gene"): | |
self.emb_mode = "cell" | |
logger.warning( | |
"emb_mode set to 'cell'. " | |
"Currently, analysis with anchor gene " | |
"only outputs effect on cell embeddings." | |
) | |
if self.cell_states_to_model is not None: | |
pu.validate_cell_states_to_model(self.cell_states_to_model) | |
if self.anchor_gene is not None: | |
self.anchor_gene = None | |
logger.warning( | |
"anchor_gene set to None. " | |
"Currently, anchor gene not available " | |
"when modeling multiple cell states." | |
) | |
if self.state_embs_dict is None: | |
logger.error( | |
"state_embs_dict must be provided for mode with cell_states_to_model. " | |
"Format is dictionary with keys specifying each possible cell state to model. " | |
"Values are target embedding positions as torch.tensor." | |
) | |
raise | |
for state_emb in self.state_embs_dict.values(): | |
if not torch.is_tensor(state_emb): | |
logger.error( | |
"state_embs_dict must be dictionary with values being torch.tensor." | |
) | |
raise | |
keys_absent = [] | |
for k, v in self.cell_states_to_model.items(): | |
if (k == "start_state") or (k == "goal_state"): | |
if v not in self.state_embs_dict.keys(): | |
keys_absent.append(v) | |
if k == "alt_states": | |
for state in v: | |
if state not in self.state_embs_dict.keys(): | |
keys_absent.append(state) | |
if len(keys_absent) > 0: | |
logger.error( | |
"Each start_state, goal_state, and alt_states in cell_states_to_model " | |
"must be a key in state_embs_dict with the value being " | |
"the state's embedding position as torch.tensor. " | |
f"Missing keys: {keys_absent}" | |
) | |
raise | |
if self.perturb_type in ["inhibit", "activate"]: | |
if self.perturb_rank_shift is None: | |
logger.error( | |
"If perturb_type is inhibit or activate then " | |
"quartile to shift by must be specified." | |
) | |
raise | |
if self.filter_data is not None: | |
for key, value in self.filter_data.items(): | |
if not isinstance(value, list): | |
self.filter_data[key] = [value] | |
logger.warning( | |
"Values in filter_data dict must be lists. " | |
f"Changing {key} value to list ([{value}])." | |
) | |
if self.cell_inds_to_perturb != "all": | |
if set(self.cell_inds_to_perturb.keys()) != {"start", "end"}: | |
logger.error( | |
"If cell_inds_to_perturb is a dictionary, keys must be 'start' and 'end'." | |
) | |
raise | |
if ( | |
self.cell_inds_to_perturb["start"] < 0 | |
or self.cell_inds_to_perturb["end"] < 0 | |
): | |
logger.error("cell_inds_to_perturb must be positive.") | |
raise | |
def perturb_data( | |
self, model_directory, input_data_file, output_directory, output_prefix | |
): | |
""" | |
Perturb genes in input data and save as results in output_directory. | |
**Parameters:** | |
model_directory : Path | |
| Path to directory containing model | |
input_data_file : Path | |
| Path to directory containing .dataset inputs | |
output_directory : Path | |
| Path to directory where perturbation data will be saved as batched pickle files | |
output_prefix : str | |
| Prefix for output files | |
""" | |
### format output path ### | |
output_path_prefix = os.path.join( | |
output_directory, f"in_silico_{self.perturb_type}_{output_prefix}" | |
) | |
### load model and define parameters ### | |
model = pu.load_model( | |
self.model_type, self.num_classes, model_directory, mode="eval" | |
) | |
self.max_len = pu.get_model_input_size(model) | |
layer_to_quant = pu.quant_layers(model) + self.emb_layer | |
### filter input data ### | |
# general filtering of input data based on filter_data argument | |
filtered_input_data = pu.load_and_filter( | |
self.filter_data, self.nproc, input_data_file | |
) | |
filtered_input_data = self.apply_additional_filters(filtered_input_data) | |
if self.perturb_group is True: | |
self.isp_perturb_set( | |
model, filtered_input_data, layer_to_quant, output_path_prefix | |
) | |
else: | |
self.isp_perturb_all( | |
model, filtered_input_data, layer_to_quant, output_path_prefix | |
) | |
def apply_additional_filters(self, filtered_input_data): | |
# additional filtering of input data dependent on isp mode | |
if self.cell_states_to_model is not None: | |
# filter for cells with start_state and log result | |
filtered_input_data = pu.filter_data_by_start_state( | |
filtered_input_data, self.cell_states_to_model, self.nproc | |
) | |
if (self.tokens_to_perturb != "all") and (self.perturb_type != "overexpress"): | |
# filter for cells with tokens_to_perturb and log result | |
filtered_input_data = pu.filter_data_by_tokens_and_log( | |
filtered_input_data, | |
self.tokens_to_perturb, | |
self.nproc, | |
"genes_to_perturb", | |
) | |
if self.anchor_token is not None: | |
# filter for cells with anchor gene and log result | |
filtered_input_data = pu.filter_data_by_tokens_and_log( | |
filtered_input_data, self.anchor_token, self.nproc, "anchor_gene" | |
) | |
# downsample and sort largest to smallest to encounter memory constraints earlier | |
filtered_input_data = pu.downsample_and_sort( | |
filtered_input_data, self.max_ncells | |
) | |
# slice dataset if cells_inds_to_perturb is not "all" | |
if self.cell_inds_to_perturb != "all": | |
filtered_input_data = pu.slice_by_inds_to_perturb( | |
filtered_input_data, self.cell_inds_to_perturb | |
) | |
return filtered_input_data | |
def isp_perturb_set( | |
self, | |
model, | |
filtered_input_data: Dataset, | |
layer_to_quant: int, | |
output_path_prefix: str, | |
): | |
def make_group_perturbation_batch(example): | |
example_input_ids = example["input_ids"] | |
example["tokens_to_perturb"] = self.tokens_to_perturb | |
indices_to_perturb = [ | |
example_input_ids.index(token) if token in example_input_ids else None | |
for token in self.tokens_to_perturb | |
] | |
indices_to_perturb = [ | |
item for item in indices_to_perturb if item is not None | |
] | |
if len(indices_to_perturb) > 0: | |
example["perturb_index"] = indices_to_perturb | |
else: | |
# -100 indicates tokens to overexpress are not present in rank value encoding | |
example["perturb_index"] = [-100] | |
if self.perturb_type == "delete": | |
example = pu.delete_indices(example) | |
elif self.perturb_type == "overexpress": | |
example = pu.overexpress_tokens(example, self.max_len) | |
example["n_overflow"] = pu.calc_n_overflow( | |
self.max_len, | |
example["length"], | |
self.tokens_to_perturb, | |
indices_to_perturb, | |
) | |
return example | |
total_batch_length = len(filtered_input_data) | |
if self.cell_states_to_model is None: | |
cos_sims_dict = defaultdict(list) | |
else: | |
cos_sims_dict = { | |
state: defaultdict(list) | |
for state in pu.get_possible_states(self.cell_states_to_model) | |
} | |
perturbed_data = filtered_input_data.map( | |
make_group_perturbation_batch, num_proc=self.nproc | |
) | |
if self.perturb_type == "overexpress": | |
filtered_input_data = filtered_input_data.add_column( | |
"n_overflow", perturbed_data["n_overflow"] | |
) | |
# remove overflow genes from original data so that embeddings are comparable | |
# i.e. if original cell has genes 0:2047 and you want to overexpress new gene 2048, | |
# then the perturbed cell will be 2048+0:2046 so we compare it to an original cell 0:2046. | |
# (otherwise we will be modeling the effect of both deleting 2047 and adding 2048, | |
# rather than only adding 2048) | |
filtered_input_data = filtered_input_data.map( | |
pu.truncate_by_n_overflow, num_proc=self.nproc | |
) | |
if self.emb_mode == "cell_and_gene": | |
stored_gene_embs_dict = defaultdict(list) | |
# iterate through batches | |
for i in trange(0, total_batch_length, self.forward_batch_size): | |
max_range = min(i + self.forward_batch_size, total_batch_length) | |
inds_select = [i for i in range(i, max_range)] | |
minibatch = filtered_input_data.select(inds_select) | |
perturbation_batch = perturbed_data.select(inds_select) | |
if self.cell_emb_style == "mean_pool": | |
full_original_emb = get_embs( | |
model, | |
minibatch, | |
"gene", | |
layer_to_quant, | |
self.pad_token_id, | |
self.forward_batch_size, | |
summary_stat=None, | |
silent=True, | |
) | |
indices_to_perturb = perturbation_batch["perturb_index"] | |
# remove indices that were perturbed | |
original_emb = pu.remove_perturbed_indices_set( | |
full_original_emb, | |
self.perturb_type, | |
indices_to_perturb, | |
self.tokens_to_perturb, | |
minibatch["length"], | |
) | |
full_perturbation_emb = get_embs( | |
model, | |
perturbation_batch, | |
"gene", | |
layer_to_quant, | |
self.pad_token_id, | |
self.forward_batch_size, | |
summary_stat=None, | |
silent=True, | |
) | |
# remove overexpressed genes | |
if self.perturb_type == "overexpress": | |
perturbation_emb = full_perturbation_emb[ | |
:, len(self.tokens_to_perturb) :, : | |
] | |
elif self.perturb_type == "delete": | |
perturbation_emb = full_perturbation_emb[ | |
:, : max(perturbation_batch["length"]), : | |
] | |
n_perturbation_genes = perturbation_emb.size()[1] | |
# if no goal states, the cosine similarties are the mean of gene cosine similarities | |
if ( | |
self.cell_states_to_model is None | |
or self.emb_mode == "cell_and_gene" | |
): | |
gene_cos_sims = pu.quant_cos_sims( | |
perturbation_emb, | |
original_emb, | |
self.cell_states_to_model, | |
self.state_embs_dict, | |
emb_mode="gene", | |
) | |
# if there are goal states, the cosine similarities are the cell cosine similarities | |
if self.cell_states_to_model is not None: | |
original_cell_emb = pu.mean_nonpadding_embs( | |
full_original_emb, | |
torch.tensor(minibatch["length"], device="cuda"), | |
dim=1, | |
) | |
perturbation_cell_emb = pu.mean_nonpadding_embs( | |
full_perturbation_emb, | |
torch.tensor(perturbation_batch["length"], device="cuda"), | |
dim=1, | |
) | |
cell_cos_sims = pu.quant_cos_sims( | |
perturbation_cell_emb, | |
original_cell_emb, | |
self.cell_states_to_model, | |
self.state_embs_dict, | |
emb_mode="cell", | |
) | |
# get cosine similarities in gene embeddings | |
# if getting gene embeddings, need gene names | |
if self.emb_mode == "cell_and_gene": | |
gene_list = minibatch["input_ids"] | |
# need to truncate gene_list | |
gene_list = [ | |
[g for g in genes if g not in self.tokens_to_perturb][ | |
:n_perturbation_genes | |
] | |
for genes in gene_list | |
] | |
for cell_i, genes in enumerate(gene_list): | |
for gene_j, affected_gene in enumerate(genes): | |
if len(self.genes_to_perturb) > 1: | |
tokens_to_perturb = tuple(self.tokens_to_perturb) | |
else: | |
tokens_to_perturb = self.tokens_to_perturb[0] | |
# fill in the gene cosine similarities | |
try: | |
stored_gene_embs_dict[ | |
(tokens_to_perturb, affected_gene) | |
].append(gene_cos_sims[cell_i, gene_j].item()) | |
except KeyError: | |
stored_gene_embs_dict[ | |
(tokens_to_perturb, affected_gene) | |
] = gene_cos_sims[cell_i, gene_j].item() | |
else: | |
gene_list = None | |
if self.cell_states_to_model is None: | |
# calculate the mean of the gene cosine similarities for cell shift | |
# tensor of nonpadding lengths for each cell | |
if self.perturb_type == "overexpress": | |
# subtract number of genes that were overexpressed | |
# since they are removed before getting cos sims | |
n_overexpressed = len(self.tokens_to_perturb) | |
nonpadding_lens = [ | |
x - n_overexpressed for x in perturbation_batch["length"] | |
] | |
else: | |
nonpadding_lens = perturbation_batch["length"] | |
cos_sims_data = pu.mean_nonpadding_embs( | |
gene_cos_sims, torch.tensor(nonpadding_lens, device="cuda") | |
) | |
cos_sims_dict = self.update_perturbation_dictionary( | |
cos_sims_dict, | |
cos_sims_data, | |
filtered_input_data, | |
indices_to_perturb, | |
gene_list, | |
) | |
else: | |
cos_sims_data = cell_cos_sims | |
for state in cos_sims_dict.keys(): | |
cos_sims_dict[state] = self.update_perturbation_dictionary( | |
cos_sims_dict[state], | |
cos_sims_data[state], | |
filtered_input_data, | |
indices_to_perturb, | |
gene_list, | |
) | |
del minibatch | |
del perturbation_batch | |
del original_emb | |
del perturbation_emb | |
del cos_sims_data | |
torch.cuda.empty_cache() | |
pu.write_perturbation_dictionary( | |
cos_sims_dict, | |
f"{output_path_prefix}_cell_embs_dict_{self.tokens_to_perturb}", | |
) | |
if self.emb_mode == "cell_and_gene": | |
pu.write_perturbation_dictionary( | |
stored_gene_embs_dict, | |
f"{output_path_prefix}_gene_embs_dict_{self.tokens_to_perturb}", | |
) | |
def isp_perturb_all( | |
self, | |
model, | |
filtered_input_data: Dataset, | |
layer_to_quant: int, | |
output_path_prefix: str, | |
): | |
pickle_batch = -1 | |
if self.cell_states_to_model is None: | |
cos_sims_dict = defaultdict(list) | |
else: | |
cos_sims_dict = { | |
state: defaultdict(list) | |
for state in pu.get_possible_states(self.cell_states_to_model) | |
} | |
if self.emb_mode == "cell_and_gene": | |
stored_gene_embs_dict = defaultdict(list) | |
for i in trange(len(filtered_input_data)): | |
example_cell = filtered_input_data.select([i]) | |
full_original_emb = get_embs( | |
model, | |
example_cell, | |
"gene", | |
layer_to_quant, | |
self.pad_token_id, | |
self.forward_batch_size, | |
summary_stat=None, | |
silent=True, | |
) | |
# gene_list is used to assign cos sims back to genes | |
# need to remove the anchor gene | |
gene_list = example_cell["input_ids"][0][:] | |
if self.anchor_token is not None: | |
for token in self.anchor_token: | |
gene_list.remove(token) | |
perturbation_batch, indices_to_perturb = pu.make_perturbation_batch( | |
example_cell, | |
self.perturb_type, | |
self.tokens_to_perturb, | |
self.anchor_token, | |
self.combos, | |
self.nproc, | |
) | |
full_perturbation_emb = get_embs( | |
model, | |
perturbation_batch, | |
"gene", | |
layer_to_quant, | |
self.pad_token_id, | |
self.forward_batch_size, | |
summary_stat=None, | |
silent=True, | |
) | |
num_inds_perturbed = 1 + self.combos | |
# need to remove overexpressed gene to quantify cosine shifts | |
if self.perturb_type == "overexpress": | |
perturbation_emb = full_perturbation_emb[:, num_inds_perturbed:, :] | |
gene_list = gene_list[ | |
num_inds_perturbed: | |
] # index 0 is not overexpressed | |
elif self.perturb_type == "delete": | |
perturbation_emb = full_perturbation_emb | |
original_batch = pu.make_comparison_batch( | |
full_original_emb, indices_to_perturb, perturb_group=False | |
) | |
if self.cell_states_to_model is None or self.emb_mode == "cell_and_gene": | |
gene_cos_sims = pu.quant_cos_sims( | |
perturbation_emb, | |
original_batch, | |
self.cell_states_to_model, | |
self.state_embs_dict, | |
emb_mode="gene", | |
) | |
if self.cell_states_to_model is not None: | |
original_cell_emb = pu.compute_nonpadded_cell_embedding( | |
full_original_emb, "mean_pool" | |
) | |
perturbation_cell_emb = pu.compute_nonpadded_cell_embedding( | |
full_perturbation_emb, "mean_pool" | |
) | |
cell_cos_sims = pu.quant_cos_sims( | |
perturbation_cell_emb, | |
original_cell_emb, | |
self.cell_states_to_model, | |
self.state_embs_dict, | |
emb_mode="cell", | |
) | |
if self.emb_mode == "cell_and_gene": | |
# remove perturbed index for gene list | |
perturbed_gene_dict = { | |
gene: gene_list[:i] + gene_list[i + 1 :] | |
for i, gene in enumerate(gene_list) | |
} | |
for perturbation_i, perturbed_gene in enumerate(gene_list): | |
for gene_j, affected_gene in enumerate( | |
perturbed_gene_dict[perturbed_gene] | |
): | |
try: | |
stored_gene_embs_dict[ | |
(perturbed_gene, affected_gene) | |
].append(gene_cos_sims[perturbation_i, gene_j].item()) | |
except KeyError: | |
stored_gene_embs_dict[ | |
(perturbed_gene, affected_gene) | |
] = gene_cos_sims[perturbation_i, gene_j].item() | |
if self.cell_states_to_model is None: | |
cos_sims_data = torch.mean(gene_cos_sims, dim=1) | |
cos_sims_dict = self.update_perturbation_dictionary( | |
cos_sims_dict, | |
cos_sims_data, | |
filtered_input_data, | |
indices_to_perturb, | |
gene_list, | |
) | |
else: | |
cos_sims_data = cell_cos_sims | |
for state in cos_sims_dict.keys(): | |
cos_sims_dict[state] = self.update_perturbation_dictionary( | |
cos_sims_dict[state], | |
cos_sims_data[state], | |
filtered_input_data, | |
indices_to_perturb, | |
gene_list, | |
) | |
# save dict to disk every 100 cells | |
if i % 100 == 0: | |
pu.write_perturbation_dictionary( | |
cos_sims_dict, | |
f"{output_path_prefix}_dict_cell_embs_1Kbatch{pickle_batch}", | |
) | |
if self.emb_mode == "cell_and_gene": | |
pu.write_perturbation_dictionary( | |
stored_gene_embs_dict, | |
f"{output_path_prefix}_dict_gene_embs_1Kbatch{pickle_batch}", | |
) | |
# reset and clear memory every 1000 cells | |
if i % 1000 == 0: | |
pickle_batch += 1 | |
if self.cell_states_to_model is None: | |
cos_sims_dict = defaultdict(list) | |
else: | |
cos_sims_dict = { | |
state: defaultdict(list) | |
for state in pu.get_possible_states(self.cell_states_to_model) | |
} | |
if self.emb_mode == "cell_and_gene": | |
stored_gene_embs_dict = defaultdict(list) | |
torch.cuda.empty_cache() | |
pu.write_perturbation_dictionary( | |
cos_sims_dict, f"{output_path_prefix}_dict_cell_embs_1Kbatch{pickle_batch}" | |
) | |
if self.emb_mode == "cell_and_gene": | |
pu.write_perturbation_dictionary( | |
stored_gene_embs_dict, | |
f"{output_path_prefix}_dict_gene_embs_1Kbatch{pickle_batch}", | |
) | |
def update_perturbation_dictionary( | |
self, | |
cos_sims_dict: defaultdict, | |
cos_sims_data: torch.Tensor, | |
filtered_input_data: Dataset, | |
indices_to_perturb: List[List[int]], | |
gene_list=None, | |
): | |
if gene_list is not None and cos_sims_data.shape[0] != len(gene_list): | |
logger.error( | |
f"len(cos_sims_data.shape[0]) != len(gene_list). \n \ | |
cos_sims_data.shape[0] = {cos_sims_data.shape[0]}.\n \ | |
len(gene_list) = {len(gene_list)}." | |
) | |
raise | |
if self.perturb_group is True: | |
if len(self.tokens_to_perturb) > 1: | |
perturbed_genes = tuple(self.tokens_to_perturb) | |
else: | |
perturbed_genes = self.tokens_to_perturb[0] | |
# if cell embeddings, can just append | |
# shape will be (batch size, 1) | |
cos_sims_data = torch.squeeze(cos_sims_data).tolist() | |
# handle case of single cell left | |
if not isinstance(cos_sims_data, list): | |
cos_sims_data = [cos_sims_data] | |
cos_sims_dict[(perturbed_genes, "cell_emb")] += cos_sims_data | |
else: | |
for i, cos in enumerate(cos_sims_data.tolist()): | |
cos_sims_dict[(gene_list[i], "cell_emb")].append(cos) | |
return cos_sims_dict | |