File size: 9,749 Bytes
9e9cca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea428cb
9e9cca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eeba323
9e9cca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import logging
import math
import pickle
from pathlib import Path

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import torch
from datasets.utils.logging import disable_progress_bar, enable_progress_bar
from sklearn import preprocessing
from sklearn.metrics import (
    ConfusionMatrixDisplay,
    accuracy_score,
    auc,
    confusion_matrix,
    f1_score,
    roc_curve,
)
from tqdm.auto import trange

from .emb_extractor import make_colorbar
from . import TOKEN_DICTIONARY_FILE

logger = logging.getLogger(__name__)

# load token dictionary (Ensembl IDs:token)
with open(TOKEN_DICTIONARY_FILE, "rb") as f:
    gene_token_dict = pickle.load(f)


def preprocess_classifier_batch(cell_batch, max_len, label_name):
    if max_len is None:
        max_len = max([len(i) for i in cell_batch["input_ids"]])

    def pad_label_example(example):
        example[label_name] = np.pad(
            example[label_name],
            (0, max_len - len(example["input_ids"])),
            mode="constant",
            constant_values=-100,
        )
        example["input_ids"] = np.pad(
            example["input_ids"],
            (0, max_len - len(example["input_ids"])),
            mode="constant",
            constant_values=gene_token_dict.get("<pad>"),
        )
        example["attention_mask"] = (
            example["input_ids"] != gene_token_dict.get("<pad>")
        ).astype(int)
        return example

    padded_batch = cell_batch.map(pad_label_example)
    return padded_batch


# Function to find the largest number smaller
# than or equal to N that is divisible by k
def find_largest_div(N, K):
    rem = N % K
    if rem == 0:
        return N
    else:
        return N - rem


def vote(logit_list):
    m = max(logit_list)
    logit_list.index(m)
    indices = [i for i, x in enumerate(logit_list) if x == m]
    if len(indices) > 1:
        return "tie"
    else:
        return indices[0]


def py_softmax(vector):
    e = np.exp(vector)
    return e / e.sum()


def classifier_predict(model, classifier_type, evalset, forward_batch_size):
    if classifier_type == "gene":
        label_name = "labels"
    elif classifier_type == "cell":
        label_name = "label"

    predict_logits = []
    predict_labels = []
    model.eval()

    # ensure there is at least 2 examples in each batch to avoid incorrect tensor dims
    evalset_len = len(evalset)
    max_divisible = find_largest_div(evalset_len, forward_batch_size)
    if len(evalset) - max_divisible == 1:
        evalset_len = max_divisible

    max_evalset_len = max(evalset.select([i for i in range(evalset_len)])["length"])

    disable_progress_bar()  # disable progress bar for preprocess_classifier_batch mapping
    for i in trange(0, evalset_len, forward_batch_size):
        max_range = min(i + forward_batch_size, evalset_len)
        batch_evalset = evalset.select([i for i in range(i, max_range)])
        padded_batch = preprocess_classifier_batch(
            batch_evalset, max_evalset_len, label_name
        )
        padded_batch.set_format(type="torch")

        input_data_batch = padded_batch["input_ids"]
        attn_msk_batch = padded_batch["attention_mask"]
        label_batch = padded_batch[label_name]
        with torch.no_grad():
            outputs = model(
                input_ids=input_data_batch.to("cuda"),
                attention_mask=attn_msk_batch.to("cuda"),
                labels=label_batch.to("cuda"),
            )
            predict_logits += [torch.squeeze(outputs.logits.to("cpu"))]
            predict_labels += [torch.squeeze(label_batch.to("cpu"))]

    enable_progress_bar()
    logits_by_cell = torch.cat(predict_logits)
    last_dim = len(logits_by_cell.shape) - 1
    all_logits = logits_by_cell.reshape(-1, logits_by_cell.shape[last_dim])
    labels_by_cell = torch.cat(predict_labels)
    all_labels = torch.flatten(labels_by_cell)
    logit_label_paired = [
        item
        for item in list(zip(all_logits.tolist(), all_labels.tolist()))
        if item[1] != -100
    ]
    y_pred = [vote(item[0]) for item in logit_label_paired]
    y_true = [item[1] for item in logit_label_paired]
    logits_list = [item[0] for item in logit_label_paired]
    return y_pred, y_true, logits_list


def get_metrics(y_pred, y_true, logits_list, num_classes, labels):
    conf_mat = confusion_matrix(y_true, y_pred, labels=list(labels))
    macro_f1 = f1_score(y_true, y_pred, average="macro")
    acc = accuracy_score(y_true, y_pred)
    roc_metrics = None  # roc metrics not reported for multiclass
    if num_classes == 2:
        y_score = [py_softmax(item)[1] for item in logits_list]
        fpr, tpr, _ = roc_curve(y_true, y_score)
        mean_fpr = np.linspace(0, 1, 100)
        interp_tpr = np.interp(mean_fpr, fpr, tpr)
        interp_tpr[0] = 0.0
        tpr_wt = len(tpr)
        roc_auc = auc(fpr, tpr)
        roc_metrics = {
            "fpr": fpr,
            "tpr": tpr,
            "interp_tpr": interp_tpr,
            "auc": roc_auc,
            "tpr_wt": tpr_wt,
        }
    return conf_mat, macro_f1, acc, roc_metrics


# get cross-validated mean and sd metrics
def get_cross_valid_roc_metrics(all_tpr, all_roc_auc, all_tpr_wt):
    wts = [count / sum(all_tpr_wt) for count in all_tpr_wt]
    all_weighted_tpr = [a * b for a, b in zip(all_tpr, wts)]
    mean_tpr = np.sum(all_weighted_tpr, axis=0)
    mean_tpr[-1] = 1.0
    all_weighted_roc_auc = [a * b for a, b in zip(all_roc_auc, wts)]
    roc_auc = np.sum(all_weighted_roc_auc)
    roc_auc_sd = math.sqrt(np.average((all_roc_auc - roc_auc) ** 2, weights=wts))
    return mean_tpr, roc_auc, roc_auc_sd


# plot ROC curve
def plot_ROC(roc_metric_dict, model_style_dict, title, output_dir, output_prefix):
    fig = plt.figure()
    fig.set_size_inches(10, 8)
    sns.set(font_scale=2)
    sns.set_style("white")
    lw = 3
    for model_name in roc_metric_dict.keys():
        mean_fpr = roc_metric_dict[model_name]["mean_fpr"]
        mean_tpr = roc_metric_dict[model_name]["mean_tpr"]
        roc_auc = roc_metric_dict[model_name]["roc_auc"]
        roc_auc_sd = roc_metric_dict[model_name]["roc_auc_sd"]
        color = model_style_dict[model_name]["color"]
        linestyle = model_style_dict[model_name]["linestyle"]
        if len(roc_metric_dict[model_name]["all_roc_auc"]) > 1:
            label = f"{model_name} (AUC {roc_auc:0.2f} $\pm$ {roc_auc_sd:0.2f})"
        else:
            label = f"{model_name} (AUC {roc_auc:0.2f})"
        plt.plot(
            mean_fpr, mean_tpr, color=color, linestyle=linestyle, lw=lw, label=label
        )

    plt.plot([0, 1], [0, 1], color="black", lw=lw, linestyle="--")
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xlabel("False Positive Rate")
    plt.ylabel("True Positive Rate")
    plt.title(title)
    plt.legend(loc="lower right")

    output_file = (Path(output_dir) / f"{output_prefix}_roc").with_suffix(".pdf")
    plt.savefig(output_file, bbox_inches="tight")
    plt.show()


# plot confusion matrix
def plot_confusion_matrix(
    conf_mat_df, title, output_dir, output_prefix, custom_class_order
):
    fig = plt.figure()
    fig.set_size_inches(10, 10)
    sns.set(font_scale=1)
    sns.set_style("whitegrid", {"axes.grid": False})
    if custom_class_order is not None:
        conf_mat_df = conf_mat_df.reindex(
            index=custom_class_order, columns=custom_class_order
        )
    display_labels = generate_display_labels(conf_mat_df)
    conf_mat = preprocessing.normalize(conf_mat_df.to_numpy(), norm="l1")
    display = ConfusionMatrixDisplay(
        confusion_matrix=conf_mat, display_labels=display_labels
    )
    display.plot(cmap="Blues", values_format=".2g")
    plt.title(title)
    plt.show()

    output_file = (Path(output_dir) / f"{output_prefix}_conf_mat").with_suffix(".pdf")
    display.figure_.savefig(output_file, bbox_inches="tight")


def generate_display_labels(conf_mat_df):
    display_labels = []
    i = 0
    for label in conf_mat_df.index:
        display_labels += [f"{label}\nn={conf_mat_df.iloc[i,:].sum():.0f}"]
        i = i + 1
    return display_labels


def plot_predictions(predictions_df, title, output_dir, output_prefix, kwargs_dict):
    sns.set(font_scale=2)
    plt.figure(figsize=(10, 10), dpi=150)
    label_colors, label_color_dict = make_colorbar(predictions_df, "true")
    predictions_df = predictions_df.drop(columns=["true"])
    predict_colors_list = [label_color_dict[label] for label in predictions_df.columns]
    predict_label_list = [label for label in predictions_df.columns]
    predict_colors = pd.DataFrame(
        pd.Series(predict_colors_list, index=predict_label_list), columns=["predicted"]
    )

    default_kwargs_dict = {
        "row_cluster": False,
        "col_cluster": False,
        "row_colors": label_colors,
        "col_colors": predict_colors,
        "linewidths": 0,
        "xticklabels": False,
        "yticklabels": False,
        "center": 0,
        "cmap": "vlag",
    }

    if kwargs_dict is not None:
        default_kwargs_dict.update(kwargs_dict)
    g = sns.clustermap(predictions_df, **default_kwargs_dict)

    plt.setp(g.ax_row_colors.get_xmajorticklabels(), rotation=45, ha="right")

    for label_color in list(label_color_dict.keys()):
        g.ax_col_dendrogram.bar(
            0, 0, color=label_color_dict[label_color], label=label_color, linewidth=0
        )

        g.ax_col_dendrogram.legend(
            title=f"{title}",
            loc="lower center",
            ncol=4,
            bbox_to_anchor=(0.5, 1),
            facecolor="white",
        )

    output_file = (Path(output_dir) / f"{output_prefix}_pred").with_suffix(".pdf")
    plt.savefig(output_file, bbox_inches="tight")