File size: 12,421 Bytes
a2d284f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Geneformer Multi-Task Cell Classifier Tutorial\n",
"\n",
"This tutorial demonstrates how to use the Geneformer Multi-Task Cell Classifier and optimizatize hyperparameter for fine-tuning"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Installation and Imports\n",
"\n",
"First import the necessary modules."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from geneformer import MTLClassifier\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Set up Paths and Parameters\n",
"\n",
"Now, let's set up the necessary paths and parameters for our classifier. We'll also define our task columns, which are specific columns from our dataset that represent the classification tasks we want to train the model on."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# Define paths\n",
"pretrained_path = \"/path/to/pretrained/Geneformer/model\" \n",
"# input data is tokenized rank value encodings generated by Geneformer tokenizer (see tokenizing_scRNAseq_data.ipynb)\n",
"train_path = \"/path/to/train/data.dataset\"\n",
"val_path = \"/path/to/val/data.dataset\"\n",
"test_path = \"/path/to/test/data.dataset\"\n",
"results_dir = \"/path/to/results/directory\"\n",
"model_save_path = \"/path/to/model/save/path\"\n",
"tensorboard_log_dir = \"/path/to/tensorboard/log/dir\"\n",
"\n",
"# Define tasks and hyperparameters\n",
"# task_columns should be a list of column names from your dataset\n",
"# Each column represents a specific classification task (e.g. cell type, disease state)\n",
"task_columns = [\"cell_type\", \"disease_state\"] # Example task columns\n",
"\n",
"hyperparameters = {\n",
" \"learning_rate\": {\"type\": \"float\", \"low\": 1e-5, \"high\": 1e-3, \"log\": True},\n",
" \"warmup_ratio\": {\"type\": \"float\", \"low\": 0.005, \"high\": 0.01},\n",
" \"weight_decay\": {\"type\": \"float\", \"low\": 0.01, \"high\": 0.1},\n",
" \"dropout_rate\": {\"type\": \"float\", \"low\": 0.0, \"high\": 0.7},\n",
" \"lr_scheduler_type\": {\"type\": \"categorical\", \"choices\": [\"cosine\"]},\n",
" \"task_weights\": {\"type\": \"float\", \"low\": 0.1, \"high\": 2.0}\n",
"}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In the code above, we've defined `task_columns` as `[\"cell_type\", \"disease_state\"]`. This means our model will be trained to classify cells based on two tasks:\n",
"1. Identifying the cell type\n",
"2. Determining the disease state\n",
"3. Note: \"unique_cell_id\" is a required column in the dataset for logging and inference purposes\n",
"\n",
"These column names should correspond to actual columns in your dataset. Each column should contain the labels for that specific classification task.\n",
"\n",
"For example, your dataset might look something like this:\n",
"\n",
" | unique_cell_id | input_ids | ... | cell_type | disease_state |\n",
" |----------------|-----------|-----|-----------|---------------|\n",
" | cell1 | ... | ... | neuron | healthy |\n",
" | cell2 | ... | ... | astrocyte | diseased |\n",
" | ... | ... | ... | ... | ... |\n",
"The model will learn to predict classes within 'cell_type' and 'disease_state' "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3. Initialize the MTLClassifier\n",
"\n",
"Now, let's create an instance of the MTLClassifier with our defined parameters and task columns."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"mc = MTLClassifier(\n",
" task_columns=task_columns, # Our defined classification tasks\n",
" study_name=\"MTLClassifier_example\",\n",
" pretrained_path=pretrained_path,\n",
" train_path=train_path,\n",
" val_path=val_path,\n",
" test_path=test_path,\n",
" model_save_path=model_save_path,\n",
" results_dir=results_dir,\n",
" tensorboard_log_dir=tensorboard_log_dir,\n",
" hyperparameters=hyperparameters,\n",
" n_trials=15, # Number of trials for hyperparameter optimization\n",
" epochs=1, # Number of training epochs (1 suggested to prevent overfitting)\n",
" batch_size=8, # Adjust based on available GPU memory\n",
" seed=42\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 4. Run Hyperparameter Optimization\n",
"\n",
"Now, let's run the Optuna study to optimize our hyperparameters for both classification tasks."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"mc.run_optuna_study()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 5. Evaluate the Model on Test Data\n",
"\n",
"After optimization, we can evaluate our model on the test dataset. This will provide performance metrics for both classification tasks. CSV containing following keys will be generated in specified results directiory \"Cell ID, task(1...n) True,task(1.,.n) Pred,task(1...n) Probabilities\""
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"mc.load_and_evaluate_test_model()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 6. (Optional) Manual Hyperparameter Tuning\n",
"\n",
"If you prefer to set hyperparameters manually, you can use the following approach:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"manual_hyperparameters = {\n",
" \"learning_rate\": 0.001,\n",
" \"warmup_ratio\": 0.01,\n",
" \"weight_decay\": 0.1,\n",
" \"dropout_rate\": 0.1,\n",
" \"lr_scheduler_type\": \"cosine\",\n",
" \"task_weights\": [1, 1], # Weights for each task (cell_type, disease_state)\n",
" \"max_layers_to_freeze\": 2\n",
"}\n",
"\n",
"mc_manual = MTLClassifier(\n",
" task_columns=task_columns,\n",
" study_name=\"mtl_manual\",\n",
" pretrained_path=pretrained_path,\n",
" train_path=train_path,\n",
" val_path=val_path,\n",
" test_path=test_path,\n",
" model_save_path=model_save_path,\n",
" results_dir=results_dir,\n",
" tensorboard_log_dir=tensorboard_log_dir,\n",
" manual_hyperparameters=manual_hyperparameters,\n",
" use_manual_hyperparameters=True,\n",
" epochs=10,\n",
" batch_size=32,\n",
" seed=42\n",
")\n",
"\n",
"mc_manual.run_manual_tuning()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Geneformer In Silico Perturber Tutorial (MTL Quantized)\n",
"This demonstrates how to use the Geneformer In Silico Perturber with a Multi-Task Learning (MTL) model in a quantized configuration to optimize runtime and memory."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"from geneformer import InSilicoPerturber, EmbExtractor, InSilicoPerturberStats"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"# Define paths\n",
"model_directory = \"/path/to/model/save/path\"\n",
"input_data_file = \"/path/to/input/data.dataset\"\n",
"output_directory = \"/path/to/output/directory\"\n",
"output_prefix = \"mtl_quantized_perturbation\"\n",
"\n",
"# Define parameters\n",
"perturb_type = \"delete\" # or \"overexpress\"\n",
"\n",
"# Define cell states to model\n",
"cell_states_to_model = {\n",
" \"state_key\": \"disease_state\", \n",
" \"start_state\": \"disease\", \n",
" \"goal_state\": \"control\"\n",
"}\n",
"\n",
"# Define filter data\n",
"filter_data_dict = {\n",
" \"cell_type\": [\"Fibroblast\"]\n",
"}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3. Extract State Embeddings\n",
"\n",
"Before we initialize the InSilicoPerturber, we need to extract the state embeddings using the EmbExtractor."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"# Initialize EmbExtractor\n",
"embex = EmbExtractor(\n",
" filter_data_dict=filter_data_dict,\n",
" max_ncells=1000, # Number of cells to perturb\n",
" emb_layer=0, # Use the second to last layer\n",
" emb_mode = \"cls\",\n",
" summary_stat=\"exact_mean\",\n",
" forward_batch_size=8, # Adjust based on available GPU memory\n",
" nproc=4\n",
")\n",
"\n",
"# Extract state embeddings\n",
"state_embs_dict = embex.get_state_embs(\n",
" cell_states_to_model,\n",
" model_directory=model_directory,\n",
" input_data_file=input_data_file,\n",
" output_directory=output_directory,\n",
" output_prefix=output_prefix\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 4. Initialize the InSilicoPerturber\n",
"\n",
"Now that we have our state embeddings, let's create an instance of the InSilicoPerturber with MTL and quantized configurations."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"# Initialize InSilicoPerturber\n",
"isp = InSilicoPerturber(\n",
" perturb_type=perturb_type,\n",
" genes_to_perturb=\"all\", # Perturb all genes\n",
" model_type=\"MTLCellClassifier-Quantized\", # Use MTL model\n",
" emb_mode=\"cls\", # Use CLS token embedding\n",
" cell_states_to_model=cell_states_to_model,\n",
" state_embs_dict=state_embs_dict,\n",
" max_ncells=1000, # Number of cells to perturb\n",
" emb_layer=0, \n",
" forward_batch_size=8, # Adjust based on available GPU memory\n",
" nproc=1\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 5. Run In Silico Perturbation\n",
"\n",
"Run the in silico perturbation on the dataset."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"# Run perturbation and output intermediate files\n",
"isp.perturb_data(\n",
" model_directory=model_directory,\n",
" input_data_file=input_data_file,\n",
" output_directory=output_directory,\n",
" output_prefix=output_prefix\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 6. Process Results with InSilicoPerturberStats\n",
"\n",
"After running the perturbation, we'll use InSilicoPerturberStats to process the intermediate files and generate the final statistics."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"# Initialize InSilicoPerturberStats\n",
"ispstats = InSilicoPerturberStats(\n",
" mode=\"goal_state_shift\",\n",
" genes_perturbed=\"all\",\n",
" combos=0,\n",
" anchor_gene=None,\n",
" cell_states_to_model=cell_states_to_model\n",
")\n",
"\n",
"# Process stats and output final .csv\n",
"ispstats.get_stats(\n",
" input_data_file,\n",
" None,\n",
" output_directory,\n",
" output_prefix\n",
")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|