File size: 12,822 Bytes
933ca80
 
f07bfd7
933ca80
f07bfd7
933ca80
f07bfd7
 
 
 
 
fe1640b
933ca80
 
 
 
 
 
 
 
 
 
f07bfd7
933ca80
 
 
f07bfd7
933ca80
 
 
f07bfd7
 
 
 
933ca80
 
 
 
 
 
 
 
 
f07bfd7
933ca80
 
 
 
 
f07bfd7
933ca80
f07bfd7
 
 
 
 
933ca80
 
 
f07bfd7
 
 
933ca80
f07bfd7
 
 
 
 
 
933ca80
 
 
f07bfd7
 
 
 
933ca80
 
 
 
f07bfd7
 
 
 
 
933ca80
 
 
 
 
 
 
 
 
 
f07bfd7
 
 
933ca80
f07bfd7
 
 
933ca80
 
f07bfd7
933ca80
 
 
f07bfd7
933ca80
 
 
 
 
 
 
 
 
f07bfd7
 
 
 
 
 
933ca80
 
 
f07bfd7
933ca80
f07bfd7
933ca80
f07bfd7
 
 
933ca80
 
 
 
 
 
 
f07bfd7
933ca80
 
f07bfd7
 
 
933ca80
 
 
f07bfd7
 
 
 
 
 
933ca80
f07bfd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
933ca80
 
 
 
 
 
f07bfd7
933ca80
 
f07bfd7
933ca80
f07bfd7
 
 
 
 
933ca80
f07bfd7
933ca80
 
 
 
 
f07bfd7
 
 
 
 
 
 
 
 
933ca80
 
 
 
 
 
 
 
 
 
 
 
f07bfd7
 
 
 
933ca80
f07bfd7
 
 
933ca80
f07bfd7
933ca80
 
 
f07bfd7
 
 
933ca80
 
 
f07bfd7
933ca80
 
 
 
 
f07bfd7
 
 
 
 
 
 
 
 
 
 
933ca80
 
 
 
f07bfd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe1640b
f07bfd7
933ca80
 
f07bfd7
 
 
 
 
 
 
 
933ca80
f07bfd7
 
 
933ca80
 
 
fe1640b
 
 
 
 
 
 
933ca80
 
 
 
 
 
 
 
 
f07bfd7
 
 
933ca80
f07bfd7
 
 
933ca80
f07bfd7
933ca80
 
 
f07bfd7
 
 
 
 
 
 
 
933ca80
 
 
 
 
 
 
 
 
 
 
f07bfd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
933ca80
 
f07bfd7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import os
import random

import numpy as np
import pandas as pd
import torch
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm

from .imports import *
from .model import GeneformerMultiTask
from .utils import calculate_task_specific_metrics, get_layer_freeze_range


def set_seed(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False


def initialize_wandb(config):
    if config.get("use_wandb", False):
        import wandb

        wandb.init(project=config["wandb_project"], config=config)
        print("Weights & Biases (wandb) initialized and will be used for logging.")
    else:
        print(
            "Weights & Biases (wandb) is not enabled. Logging will use other methods."
        )


def create_model(config, num_labels_list, device):
    model = GeneformerMultiTask(
        config["pretrained_path"],
        num_labels_list,
        dropout_rate=config["dropout_rate"],
        use_task_weights=config["use_task_weights"],
        task_weights=config["task_weights"],
        max_layers_to_freeze=config["max_layers_to_freeze"],
        use_attention_pooling=config["use_attention_pooling"],
    )
    if config["use_data_parallel"]:
        model = nn.DataParallel(model)
    return model.to(device)


def setup_optimizer_and_scheduler(model, config, total_steps):
    optimizer = AdamW(
        model.parameters(),
        lr=config["learning_rate"],
        weight_decay=config["weight_decay"],
    )
    warmup_steps = int(config["warmup_ratio"] * total_steps)

    if config["lr_scheduler_type"] == "linear":
        scheduler = get_linear_schedule_with_warmup(
            optimizer, num_warmup_steps=warmup_steps, num_training_steps=total_steps
        )
    elif config["lr_scheduler_type"] == "cosine":
        scheduler = get_cosine_schedule_with_warmup(
            optimizer,
            num_warmup_steps=warmup_steps,
            num_training_steps=total_steps,
            num_cycles=0.5,
        )

    return optimizer, scheduler


def train_epoch(
    model, train_loader, optimizer, scheduler, device, config, writer, epoch
):
    model.train()
    progress_bar = tqdm(train_loader, desc=f"Epoch {epoch+1}/{config['epochs']}")
    for batch_idx, batch in enumerate(progress_bar):
        optimizer.zero_grad()
        input_ids = batch["input_ids"].to(device)
        attention_mask = batch["attention_mask"].to(device)
        labels = [
            batch["labels"][task_name].to(device) for task_name in config["task_names"]
        ]

        loss, _, _ = model(input_ids, attention_mask, labels)
        loss.backward()

        if config["gradient_clipping"]:
            torch.nn.utils.clip_grad_norm_(model.parameters(), config["max_grad_norm"])

        optimizer.step()
        scheduler.step()

        writer.add_scalar(
            "Training Loss", loss.item(), epoch * len(train_loader) + batch_idx
        )
        if config.get("use_wandb", False):
            import wandb

            wandb.log({"Training Loss": loss.item()})

        # Update progress bar
        progress_bar.set_postfix({"loss": f"{loss.item():.4f}"})

    return loss.item()  # Return the last batch loss


def validate_model(model, val_loader, device, config):
    model.eval()
    val_loss = 0.0
    task_true_labels = {task_name: [] for task_name in config["task_names"]}
    task_pred_labels = {task_name: [] for task_name in config["task_names"]}
    task_pred_probs = {task_name: [] for task_name in config["task_names"]}

    with torch.no_grad():
        for batch in val_loader:
            input_ids = batch["input_ids"].to(device)
            attention_mask = batch["attention_mask"].to(device)
            labels = [
                batch["labels"][task_name].to(device)
                for task_name in config["task_names"]
            ]
            loss, logits, _ = model(input_ids, attention_mask, labels)
            val_loss += loss.item()

            for sample_idx in range(len(batch["input_ids"])):
                for i, task_name in enumerate(config["task_names"]):
                    true_label = batch["labels"][task_name][sample_idx].item()
                    pred_label = torch.argmax(logits[i][sample_idx], dim=-1).item()
                    pred_prob = (
                        torch.softmax(logits[i][sample_idx], dim=-1).cpu().numpy()
                    )
                    task_true_labels[task_name].append(true_label)
                    task_pred_labels[task_name].append(pred_label)
                    task_pred_probs[task_name].append(pred_prob)

    val_loss /= len(val_loader)
    return val_loss, task_true_labels, task_pred_labels, task_pred_probs


def log_metrics(task_metrics, val_loss, config, writer, epochs):
    for task_name, metrics in task_metrics.items():
        print(
            f"{task_name} - Validation F1 Macro: {metrics['f1']:.4f}, Validation Accuracy: {metrics['accuracy']:.4f}"
        )
        if config.get("use_wandb", False):
            import wandb

            wandb.log(
                {
                    f"{task_name} Validation F1 Macro": metrics["f1"],
                    f"{task_name} Validation Accuracy": metrics["accuracy"],
                }
            )

    writer.add_scalar("Validation Loss", val_loss, epochs)
    for task_name, metrics in task_metrics.items():
        writer.add_scalar(f"{task_name} - Validation F1 Macro", metrics["f1"], epochs)
        writer.add_scalar(
            f"{task_name} - Validation Accuracy", metrics["accuracy"], epochs
        )


def save_validation_predictions(
    val_cell_id_mapping,
    task_true_labels,
    task_pred_labels,
    task_pred_probs,
    config,
    trial_number=None,
):
    if trial_number is not None:
        trial_results_dir = os.path.join(config["results_dir"], f"trial_{trial_number}")
        os.makedirs(trial_results_dir, exist_ok=True)
        val_preds_file = os.path.join(trial_results_dir, "val_preds.csv")
    else:
        val_preds_file = os.path.join(config["results_dir"], "manual_run_val_preds.csv")

    rows = []
    for sample_idx in range(len(val_cell_id_mapping)):
        row = {"Cell ID": val_cell_id_mapping[sample_idx]}
        for task_name in config["task_names"]:
            row[f"{task_name} True"] = task_true_labels[task_name][sample_idx]
            row[f"{task_name} Pred"] = task_pred_labels[task_name][sample_idx]
            row[f"{task_name} Probabilities"] = ",".join(
                map(str, task_pred_probs[task_name][sample_idx])
            )
        rows.append(row)

    df = pd.DataFrame(rows)
    df.to_csv(val_preds_file, index=False)
    print(f"Validation predictions saved to {val_preds_file}")


def train_model(
    config,
    device,
    train_loader,
    val_loader,
    train_cell_id_mapping,
    val_cell_id_mapping,
    num_labels_list,
):
    set_seed(config["seed"])
    initialize_wandb(config)

    model = create_model(config, num_labels_list, device)
    total_steps = len(train_loader) * config["epochs"]
    optimizer, scheduler = setup_optimizer_and_scheduler(model, config, total_steps)

    log_dir = os.path.join(config["tensorboard_log_dir"], "manual_run")
    writer = SummaryWriter(log_dir=log_dir)

    epoch_progress = tqdm(range(config["epochs"]), desc="Training Progress")
    for epoch in epoch_progress:
        last_loss = train_epoch(
            model, train_loader, optimizer, scheduler, device, config, writer, epoch
        )
        epoch_progress.set_postfix({"last_loss": f"{last_loss:.4f}"})

    val_loss, task_true_labels, task_pred_labels, task_pred_probs = validate_model(
        model, val_loader, device, config
    )
    task_metrics = calculate_task_specific_metrics(task_true_labels, task_pred_labels)

    log_metrics(task_metrics, val_loss, config, writer, config["epochs"])
    writer.close()

    save_validation_predictions(
        val_cell_id_mapping, task_true_labels, task_pred_labels, task_pred_probs, config
    )

    if config.get("use_wandb", False):
        import wandb

        wandb.finish()

    print(f"\nFinal Validation Loss: {val_loss:.4f}")
    return val_loss, model  # Return both the validation loss and the trained model


def objective(
    trial,
    train_loader,
    val_loader,
    train_cell_id_mapping,
    val_cell_id_mapping,
    num_labels_list,
    config,
    device,
):
    set_seed(config["seed"])  # Set the seed before each trial
    initialize_wandb(config)

    # Hyperparameters
    config["learning_rate"] = trial.suggest_float(
        "learning_rate",
        config["hyperparameters"]["learning_rate"]["low"],
        config["hyperparameters"]["learning_rate"]["high"],
        log=config["hyperparameters"]["learning_rate"]["log"],
    )
    config["warmup_ratio"] = trial.suggest_float(
        "warmup_ratio",
        config["hyperparameters"]["warmup_ratio"]["low"],
        config["hyperparameters"]["warmup_ratio"]["high"],
    )
    config["weight_decay"] = trial.suggest_float(
        "weight_decay",
        config["hyperparameters"]["weight_decay"]["low"],
        config["hyperparameters"]["weight_decay"]["high"],
    )
    config["dropout_rate"] = trial.suggest_float(
        "dropout_rate",
        config["hyperparameters"]["dropout_rate"]["low"],
        config["hyperparameters"]["dropout_rate"]["high"],
    )
    config["lr_scheduler_type"] = trial.suggest_categorical(
        "lr_scheduler_type", config["hyperparameters"]["lr_scheduler_type"]["choices"]
    )
    config["use_attention_pooling"] = trial.suggest_categorical(
        "use_attention_pooling", [False]
    )

    if config["use_task_weights"]:
        config["task_weights"] = [
            trial.suggest_float(
                f"task_weight_{i}",
                config["hyperparameters"]["task_weights"]["low"],
                config["hyperparameters"]["task_weights"]["high"],
            )
            for i in range(len(num_labels_list))
        ]
        weight_sum = sum(config["task_weights"])
        config["task_weights"] = [
            weight / weight_sum for weight in config["task_weights"]
        ]
    else:
        config["task_weights"] = None

    # Dynamic range for max_layers_to_freeze
    freeze_range = get_layer_freeze_range(config["pretrained_path"])
    config["max_layers_to_freeze"] = trial.suggest_int(
        "max_layers_to_freeze",
        freeze_range["min"],
        freeze_range["max"]
    )

    model = create_model(config, num_labels_list, device)
    total_steps = len(train_loader) * config["epochs"]
    optimizer, scheduler = setup_optimizer_and_scheduler(model, config, total_steps)

    log_dir = os.path.join(config["tensorboard_log_dir"], f"trial_{trial.number}")
    writer = SummaryWriter(log_dir=log_dir)

    for epoch in range(config["epochs"]):
        train_epoch(
            model, train_loader, optimizer, scheduler, device, config, writer, epoch
        )

    val_loss, task_true_labels, task_pred_labels, task_pred_probs = validate_model(
        model, val_loader, device, config
    )
    task_metrics = calculate_task_specific_metrics(task_true_labels, task_pred_labels)

    log_metrics(task_metrics, val_loss, config, writer, config["epochs"])
    writer.close()

    save_validation_predictions(
        val_cell_id_mapping,
        task_true_labels,
        task_pred_labels,
        task_pred_probs,
        config,
        trial.number,
    )

    trial.set_user_attr("model_state_dict", model.state_dict())
    trial.set_user_attr("task_weights", config["task_weights"])

    trial.report(val_loss, config["epochs"])

    if trial.should_prune():
        raise optuna.TrialPruned()

    if config.get("use_wandb", False):
        import wandb

        wandb.log(
            {
                "trial_number": trial.number,
                "val_loss": val_loss,
                **{
                    f"{task_name}_f1": metrics["f1"]
                    for task_name, metrics in task_metrics.items()
                },
                **{
                    f"{task_name}_accuracy": metrics["accuracy"]
                    for task_name, metrics in task_metrics.items()
                },
                **{
                    k: v
                    for k, v in config.items()
                    if k
                    in [
                        "learning_rate",
                        "warmup_ratio",
                        "weight_decay",
                        "dropout_rate",
                        "lr_scheduler_type",
                        "use_attention_pooling",
                        "max_layers_to_freeze",
                    ]
                },
            }
        )
        wandb.finish()

    return val_loss