csukuangfj
commited on
Commit
·
990ab50
1
Parent(s):
a227b40
Update README.
Browse files
README.md
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Introduction
|
2 |
+
|
3 |
+
This repo contains pre-trained model using
|
4 |
+
<https://github.com/k2-fsa/icefall/pull/219>.
|
5 |
+
|
6 |
+
It is trained on [AIShell](https://www.openslr.org/33/) dataset
|
7 |
+
using modified transducer from [optimized_transducer](https://github.com/csukuangfj/optimized_transducer).
|
8 |
+
Also, it uses [aidatatang_200zh](http://www.openslr.org/62/) as extra training data.
|
9 |
+
|
10 |
+
## How to clone this repo
|
11 |
+
```
|
12 |
+
sudo apt-get install git-lfs
|
13 |
+
git clone https://huggingface.co/csukuangfj/icefall-aishell-transducer-stateless-modified-2-2022-03-01
|
14 |
+
|
15 |
+
cd icefall-aishell-transducer-stateless-modified-2-2022-03-01
|
16 |
+
git lfs pull
|
17 |
+
```
|
18 |
+
|
19 |
+
**Catuion**: You have to run `git lfs pull`. Otherwise, you will be SAD later.
|
20 |
+
|
21 |
+
The model in this repo is trained using the commit `TODO`.
|
22 |
+
|
23 |
+
You can use
|
24 |
+
|
25 |
+
```
|
26 |
+
git clone https://github.com/k2-fsa/icefall
|
27 |
+
cd icefall
|
28 |
+
git checkout TODO
|
29 |
+
```
|
30 |
+
to download `icefall`.
|
31 |
+
|
32 |
+
You can find the model information by visiting <https://github.com/k2-fsa/icefall/blob/TODO/egs/aishell/ASR/transducer_stateless_modified-2/train.py#L232>.
|
33 |
+
|
34 |
+
|
35 |
+
In short, the encoder is a Conformer model with 8 heads, 12 encoder layers, 512-dim attention, 2048-dim feedforward;
|
36 |
+
the decoder contains a 512-dim embedding layer and a Conv1d with kernel size 2.
|
37 |
+
|
38 |
+
The decoder architecture is modified from
|
39 |
+
[Rnn-Transducer with Stateless Prediction Network](https://ieeexplore.ieee.org/document/9054419).
|
40 |
+
A Conv1d layer is placed right after the input embedding layer.
|
41 |
+
|
42 |
+
-----
|
43 |
+
|
44 |
+
## Description
|
45 |
+
|
46 |
+
This repo provides pre-trained transducer Conformer model for the AIShell dataset
|
47 |
+
using [icefall][icefall]. There are no RNNs in the decoder. The decoder is stateless
|
48 |
+
and contains only an embedding layer and a Conv1d.
|
49 |
+
|
50 |
+
The commands for training are:
|
51 |
+
|
52 |
+
```bash
|
53 |
+
cd egs/aishell/ASR
|
54 |
+
./prepare.sh --stop-stage 6
|
55 |
+
./prepare_aidatatang_200zh.sh
|
56 |
+
|
57 |
+
export CUDA_VISIBLE_DEVICES="0,1,2"
|
58 |
+
|
59 |
+
./transducer_stateless_modified-2/train.py \
|
60 |
+
--world-size 3 \
|
61 |
+
--num-epochs 90 \
|
62 |
+
--start-epoch 0 \
|
63 |
+
--exp-dir transducer_stateless_modified-2/exp-2 \
|
64 |
+
--max-duration 250 \
|
65 |
+
--lr-factor 2.0 \
|
66 |
+
--context-size 2 \
|
67 |
+
--modified-transducer-prob 0.25 \
|
68 |
+
--datatang-prob 0.2
|
69 |
+
```
|
70 |
+
|
71 |
+
The tensorboard training log can be found at
|
72 |
+
<https://tensorboard.dev/experiment/oG72ZlWaSGua6fXkcGRRjA/>
|
73 |
+
|
74 |
+
The commands for decoding are
|
75 |
+
|
76 |
+
```bash
|
77 |
+
# greedy search
|
78 |
+
for epoch in 89; do
|
79 |
+
for avg in 38; do
|
80 |
+
./transducer_stateless_modified-2/decode.py \
|
81 |
+
--epoch $epoch \
|
82 |
+
--avg $avg \
|
83 |
+
--exp-dir transducer_stateless_modified-2/exp-2 \
|
84 |
+
--max-duration 100 \
|
85 |
+
--context-size 2 \
|
86 |
+
--decoding-method greedy_search \
|
87 |
+
--max-sym-per-frame 1
|
88 |
+
done
|
89 |
+
done
|
90 |
+
|
91 |
+
# modified beam search
|
92 |
+
for epoch in 89; do
|
93 |
+
for avg in 38; do
|
94 |
+
./transducer_stateless_modified-2/decode.py \
|
95 |
+
--epoch $epoch \
|
96 |
+
--avg $avg \
|
97 |
+
--exp-dir transducer_stateless_modified-2/exp-2 \
|
98 |
+
--max-duration 100 \
|
99 |
+
--context-size 2 \
|
100 |
+
--decoding-method modified_beam_search \
|
101 |
+
--beam-size 4
|
102 |
+
done
|
103 |
+
done
|
104 |
+
```
|
105 |
+
|
106 |
+
You can find the decoding log for the above command in this
|
107 |
+
repo (in the folder [log][log]).
|
108 |
+
|
109 |
+
The WER for the test dataset is
|
110 |
+
|
111 |
+
| | test |comment |
|
112 |
+
|------------------------|------|----------------------------------------------------------------|
|
113 |
+
| greedy search | 4.94 |--epoch 89, --avg 38, --max-duration 100, --max-sym-per-frame 1 |
|
114 |
+
| modified beam search | 4.68 |--epoch 89, --avg 38, --max-duration 100 --beam-size 4 |
|
115 |
+
|
116 |
+
# File description
|
117 |
+
|
118 |
+
- [log][log], this directory contains the decoding log and decoding results
|
119 |
+
- [test_wavs][test_wavs], this directory contains wave files for testing the pre-trained model
|
120 |
+
- [data][data], this directory contains files generated by [prepare.sh][prepare]
|
121 |
+
- [exp][exp], this directory contains only one file: `preprained.pt`
|
122 |
+
|
123 |
+
`exp/pretrained.pt` is generated by the following command:
|
124 |
+
|
125 |
+
```bash
|
126 |
+
epoch=89
|
127 |
+
avg=38
|
128 |
+
|
129 |
+
./transducer_stateless_modified-2/export.py \
|
130 |
+
--exp-dir ./transducer_stateless_modified-2/exp-2 \
|
131 |
+
--lang-dir ./data/lang_char \
|
132 |
+
--epoch $epoch \
|
133 |
+
--avg $avg
|
134 |
+
```
|
135 |
+
|
136 |
+
**HINT**: To use `pretrained.pt` to compute the WER for the `test` dataset,
|
137 |
+
just do the following:
|
138 |
+
|
139 |
+
```bash
|
140 |
+
cp icefall-aishell-transducer-stateless-modified-2-2022-03-01/exp/pretrained.pt \
|
141 |
+
/path/to/icefall/egs/aishell/ASR/transducer_stateless_modified-2/exp/epoch-999.pt
|
142 |
+
```
|
143 |
+
and pass `--epoch 999 --avg 1` to `transducer_stateless_modified-2/decode.py`.
|
144 |
+
|
145 |
+
|
146 |
+
[icefall]: https://github.com/k2-fsa/icefall
|
147 |
+
[prepare]: https://github.com/k2-fsa/icefall/blob/master/egs/aishell/ASR/prepare.sh
|
148 |
+
[exp]: https://huggingface.co/csukuangfj/icefall-aishell-transducer-stateless-modified-2-2022-03-01/tree/main/exp
|
149 |
+
[data]: https://huggingface.co/csukuangfj/icefall-aishell-transducer-stateless-modified-2-2022-03-01/tree/main/data
|
150 |
+
[test_wavs]: https://huggingface.co/csukuangfj/icefall-aishell-transducer-stateless-modified-2-2022-03-01/tree/main/test_wavs
|
151 |
+
[log]: https://huggingface.co/csukuangfj/icefall-aishell-transducer-stateless-modified-2-2022-03-01/tree/main/log
|
152 |
+
[icefall]: https://github.com/k2-fsa/icefall
|