File size: 2,553 Bytes
25516da
 
 
 
 
9644ad8
 
25516da
 
 
 
 
 
 
 
 
 
 
 
 
9644ad8
25516da
9644ad8
 
25516da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-1b
tags:
- automatic-speech-recognition
- bigcgen
- generated_from_trainer
metrics:
- wer
model-index:
- name: xls-r-1b-bigcgen-female-5hrs-model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xls-r-1b-bigcgen-female-5hrs-model

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the BIGCGEN - NA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7473
- Wer: 0.7080

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| No log        | 0.4237 | 100  | 3.7316          | 1.0    |
| No log        | 0.8475 | 200  | 2.8335          | 1.0    |
| No log        | 1.2712 | 300  | 2.0310          | 1.0    |
| No log        | 1.6949 | 400  | 1.1695          | 0.9975 |
| 5.5638        | 2.1186 | 500  | 1.1579          | 0.9917 |
| 5.5638        | 2.5424 | 600  | 1.1173          | 0.9931 |
| 5.5638        | 2.9661 | 700  | 0.9185          | 0.7612 |
| 5.5638        | 3.3898 | 800  | 0.8461          | 0.8634 |
| 5.5638        | 3.8136 | 900  | 0.7551          | 0.7391 |
| 1.2967        | 4.2373 | 1000 | 0.8461          | 0.8179 |
| 1.2967        | 4.6610 | 1100 | 1.0126          | 0.9311 |
| 1.2967        | 5.0847 | 1200 | 0.7473          | 0.7077 |
| 1.2967        | 5.5085 | 1300 | 0.7741          | 0.7567 |
| 1.2967        | 5.9322 | 1400 | 0.8527          | 0.7521 |
| 0.8911        | 6.3559 | 1500 | 0.9529          | 0.8052 |
| 0.8911        | 6.7797 | 1600 | 1.0235          | 0.8309 |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0