File size: 2,040 Bytes
749a73a 7ad781c 749a73a 7ad781c 749a73a 7ad781c 749a73a 7ad781c 749a73a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- lozgen
metrics:
- wer
model-index:
- name: whisper-medium-lozgen-male-model
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: lozgen
type: lozgen
metrics:
- name: Wer
type: wer
value: 0.4796960341961529
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-medium-lozgen-male-model
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the lozgen dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7984
- Wer: 0.4797
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:------:|
| 1.2961 | 2.9851 | 200 | 0.7984 | 0.4797 |
| 0.2221 | 5.9701 | 400 | 0.8183 | 0.4540 |
| 0.0963 | 8.9552 | 600 | 0.8391 | 0.3890 |
| 0.0457 | 11.9403 | 800 | 0.8436 | 0.3887 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
|