csikasote commited on
Commit
bd25a5b
·
verified ·
1 Parent(s): f0caa54

Model save

Browse files
Files changed (1) hide show
  1. README.md +94 -0
README.md ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: cc-by-nc-4.0
4
+ base_model: facebook/mms-1b-all
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - wer
9
+ model-index:
10
+ - name: mms-1b-lozgen-combined-model
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # mms-1b-lozgen-combined-model
18
+
19
+ This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.4288
22
+ - Wer: 0.3297
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 0.0003
42
+ - train_batch_size: 4
43
+ - eval_batch_size: 4
44
+ - seed: 42
45
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_steps: 100
48
+ - num_epochs: 30.0
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
54
+ |:-------------:|:-------:|:----:|:---------------:|:------:|
55
+ | 6.5686 | 0.4065 | 100 | 3.0827 | 0.9701 |
56
+ | 2.6223 | 0.8130 | 200 | 2.2379 | 0.9112 |
57
+ | 1.4386 | 1.2195 | 300 | 0.6910 | 0.7809 |
58
+ | 0.8073 | 1.6260 | 400 | 0.5903 | 0.5699 |
59
+ | 0.651 | 2.0325 | 500 | 0.5555 | 0.5037 |
60
+ | 0.655 | 2.4390 | 600 | 0.5298 | 0.4818 |
61
+ | 0.6579 | 2.8455 | 700 | 0.5298 | 0.4603 |
62
+ | 0.5699 | 3.2520 | 800 | 0.5160 | 0.4284 |
63
+ | 0.6104 | 3.6585 | 900 | 0.5070 | 0.4320 |
64
+ | 0.604 | 4.0650 | 1000 | 0.4978 | 0.4098 |
65
+ | 0.5681 | 4.4715 | 1100 | 0.4975 | 0.4072 |
66
+ | 0.5493 | 4.8780 | 1200 | 0.4878 | 0.4038 |
67
+ | 0.581 | 5.2846 | 1300 | 0.4826 | 0.3965 |
68
+ | 0.5746 | 5.6911 | 1400 | 0.4793 | 0.4242 |
69
+ | 0.5238 | 6.0976 | 1500 | 0.4724 | 0.3833 |
70
+ | 0.5204 | 6.5041 | 1600 | 0.4866 | 0.3864 |
71
+ | 0.5563 | 6.9106 | 1700 | 0.4672 | 0.3839 |
72
+ | 0.5121 | 7.3171 | 1800 | 0.4664 | 0.3719 |
73
+ | 0.4774 | 7.7236 | 1900 | 0.4625 | 0.3652 |
74
+ | 0.5356 | 8.1301 | 2000 | 0.4721 | 0.3693 |
75
+ | 0.4385 | 8.5366 | 2100 | 0.4560 | 0.3695 |
76
+ | 0.5561 | 8.9431 | 2200 | 0.4453 | 0.3594 |
77
+ | 0.414 | 9.3496 | 2300 | 0.4489 | 0.3546 |
78
+ | 0.4763 | 9.7561 | 2400 | 0.4525 | 0.3521 |
79
+ | 0.5317 | 10.1626 | 2500 | 0.4424 | 0.3557 |
80
+ | 0.4939 | 10.5691 | 2600 | 0.4398 | 0.3502 |
81
+ | 0.4456 | 10.9756 | 2700 | 0.4415 | 0.3467 |
82
+ | 0.4583 | 11.3821 | 2800 | 0.4502 | 0.3446 |
83
+ | 0.4573 | 11.7886 | 2900 | 0.4267 | 0.3403 |
84
+ | 0.398 | 12.1951 | 3000 | 0.4305 | 0.3406 |
85
+ | 0.472 | 12.6016 | 3100 | 0.4268 | 0.3320 |
86
+ | 0.3993 | 13.0081 | 3200 | 0.4288 | 0.3297 |
87
+
88
+
89
+ ### Framework versions
90
+
91
+ - Transformers 4.48.0.dev0
92
+ - Pytorch 2.5.1+cu124
93
+ - Datasets 3.2.0
94
+ - Tokenizers 0.21.0