Create modeling_custom.py
Browse files- modeling_custom.py +29 -0
modeling_custom.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch import nn
|
2 |
+
from huggingface_hub import PyTorchModelHubMixin
|
3 |
+
|
4 |
+
class GatedRegressionModel(nn.Module, PyTorchModelHubMixin):
|
5 |
+
def __init__(self, base_model):
|
6 |
+
super().__init__()
|
7 |
+
self.base_model = base_model
|
8 |
+
self.hidden_dim = 1024
|
9 |
+
self.gate_model = nn.ModuleList([
|
10 |
+
nn.Linear(self.base_model.pre_classifier.out_features, self.hidden_dim, bias=True),
|
11 |
+
nn.GELU(),
|
12 |
+
nn.Dropout(p=0.2),
|
13 |
+
nn.Linear(self.hidden_dim, self.hidden_dim, bias=True),
|
14 |
+
nn.GELU(),
|
15 |
+
nn.Dropout(p=0.2),
|
16 |
+
nn.Linear(self.hidden_dim, 1, bias=True),
|
17 |
+
nn.GELU(),
|
18 |
+
nn.Dropout(p=0.2),
|
19 |
+
])
|
20 |
+
|
21 |
+
|
22 |
+
def forward(self, input_ids, attention_mask):
|
23 |
+
o = self.base_model.distilbert(input_ids=input_ids, attention_mask=attention_mask)[0][:, 0] # encoder-decoder architecture
|
24 |
+
o = self.base_model.pre_classifier(o)
|
25 |
+
scores = self.base_model.classifier(o)
|
26 |
+
gate = o
|
27 |
+
for layer in self.gate_model:
|
28 |
+
gate = layer(gate)
|
29 |
+
return (gate * scores).sum(axis=1)
|