update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- summarization
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- multi_news
|
8 |
+
metrics:
|
9 |
+
- rouge
|
10 |
+
model-index:
|
11 |
+
- name: multi-news-diff-weight
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Sequence-to-sequence Language Modeling
|
15 |
+
type: text2text-generation
|
16 |
+
dataset:
|
17 |
+
name: multi_news
|
18 |
+
type: multi_news
|
19 |
+
config: default
|
20 |
+
split: train[:20%]
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Rouge1
|
24 |
+
type: rouge
|
25 |
+
value: 9.9082
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# multi-news-diff-weight
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the multi_news dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 2.5350
|
36 |
+
- Rouge1: 9.9082
|
37 |
+
- Rouge2: 3.6995
|
38 |
+
- Rougel: 7.6135
|
39 |
+
- Rougelsum: 9.0176
|
40 |
+
|
41 |
+
## Model description
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Intended uses & limitations
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training and evaluation data
|
50 |
+
|
51 |
+
More information needed
|
52 |
+
|
53 |
+
## Training procedure
|
54 |
+
|
55 |
+
### Training hyperparameters
|
56 |
+
|
57 |
+
The following hyperparameters were used during training:
|
58 |
+
- learning_rate: 5e-05
|
59 |
+
- train_batch_size: 2
|
60 |
+
- eval_batch_size: 2
|
61 |
+
- seed: 42
|
62 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
+
- lr_scheduler_type: linear
|
64 |
+
- num_epochs: 5
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|
69 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|
|
70 |
+
| 2.8555 | 1.0 | 4047 | 2.5846 | 9.7797 | 3.6212 | 7.5597 | 8.9387 |
|
71 |
+
| 2.5262 | 2.0 | 8094 | 2.5231 | 9.7969 | 3.5968 | 7.5592 | 8.9532 |
|
72 |
+
| 2.3195 | 3.0 | 12141 | 2.5149 | 9.83 | 3.6338 | 7.5109 | 8.9725 |
|
73 |
+
| 2.1655 | 4.0 | 16188 | 2.5188 | 9.8704 | 3.6936 | 7.6094 | 9.0336 |
|
74 |
+
| 2.055 | 5.0 | 20235 | 2.5350 | 9.9082 | 3.6995 | 7.6135 | 9.0176 |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- Transformers 4.29.1
|
80 |
+
- Pytorch 2.0.0
|
81 |
+
- Datasets 2.12.0
|
82 |
+
- Tokenizers 0.13.3
|