Upload 2 files
Browse files- configuration_gpt2l.py +273 -0
- modeling_gpt2l.py +974 -0
configuration_gpt2l.py
ADDED
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" OpenAI GPT-2 configuration"""
|
17 |
+
from collections import OrderedDict
|
18 |
+
from typing import Any, List, Mapping, Optional
|
19 |
+
|
20 |
+
from transformers import PreTrainedTokenizer, TensorType, is_torch_available
|
21 |
+
from transformers.configuration_utils import PretrainedConfig
|
22 |
+
from transformers.onnx import OnnxConfigWithPast, PatchingSpec
|
23 |
+
from transformers.utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
29 |
+
"gpt2": "https://huggingface.co/gpt2/resolve/main/config.json",
|
30 |
+
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/config.json",
|
31 |
+
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/config.json",
|
32 |
+
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/config.json",
|
33 |
+
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/config.json",
|
34 |
+
}
|
35 |
+
|
36 |
+
|
37 |
+
class GPT2LConfig(PretrainedConfig):
|
38 |
+
"""
|
39 |
+
This is the configuration class to store the configuration of a [`GPT2Model`] or a [`TFGPT2Model`]. It is used to
|
40 |
+
instantiate a GPT-2 model according to the specified arguments, defining the model architecture. Instantiating a
|
41 |
+
configuration with the defaults will yield a similar configuration to that of the GPT-2
|
42 |
+
[gpt2](https://huggingface.co/gpt2) architecture.
|
43 |
+
|
44 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
45 |
+
documentation from [`PretrainedConfig`] for more information.
|
46 |
+
|
47 |
+
|
48 |
+
Args:
|
49 |
+
vocab_size (`int`, *optional*, defaults to 50257):
|
50 |
+
Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
|
51 |
+
`inputs_ids` passed when calling [`GPT2Model`] or [`TFGPT2Model`].
|
52 |
+
n_positions (`int`, *optional*, defaults to 1024):
|
53 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
54 |
+
just in case (e.g., 512 or 1024 or 2048).
|
55 |
+
n_embd (`int`, *optional*, defaults to 768):
|
56 |
+
Dimensionality of the embeddings and hidden states.
|
57 |
+
n_layer (`int`, *optional*, defaults to 12):
|
58 |
+
Number of hidden layers in the Transformer encoder.
|
59 |
+
n_head (`int`, *optional*, defaults to 12):
|
60 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
61 |
+
n_inner (`int`, *optional*, defaults to None):
|
62 |
+
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
|
63 |
+
activation_function (`str`, *optional*, defaults to `"gelu"`):
|
64 |
+
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
|
65 |
+
resid_pdrop (`float`, *optional*, defaults to 0.1):
|
66 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
67 |
+
embd_pdrop (`float`, *optional*, defaults to 0.1):
|
68 |
+
The dropout ratio for the embeddings.
|
69 |
+
attn_pdrop (`float`, *optional*, defaults to 0.1):
|
70 |
+
The dropout ratio for the attention.
|
71 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
72 |
+
The epsilon to use in the layer normalization layers.
|
73 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
74 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
75 |
+
summary_type (`string`, *optional*, defaults to `"cls_index"`):
|
76 |
+
Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
|
77 |
+
[`TFGPT2DoubleHeadsModel`].
|
78 |
+
|
79 |
+
Has to be one of the following options:
|
80 |
+
|
81 |
+
- `"last"`: Take the last token hidden state (like XLNet).
|
82 |
+
- `"first"`: Take the first token hidden state (like BERT).
|
83 |
+
- `"mean"`: Take the mean of all tokens hidden states.
|
84 |
+
- `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
|
85 |
+
- `"attn"`: Not implemented now, use multi-head attention.
|
86 |
+
summary_use_proj (`bool`, *optional*, defaults to `True`):
|
87 |
+
Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
|
88 |
+
[`TFGPT2DoubleHeadsModel`].
|
89 |
+
|
90 |
+
Whether or not to add a projection after the vector extraction.
|
91 |
+
summary_activation (`str`, *optional*):
|
92 |
+
Argument used when doing sequence summary. Used in for the multiple choice head in
|
93 |
+
[`GPT2DoubleHeadsModel`].
|
94 |
+
|
95 |
+
Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
|
96 |
+
summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
|
97 |
+
Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
|
98 |
+
[`TFGPT2DoubleHeadsModel`].
|
99 |
+
|
100 |
+
Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
|
101 |
+
summary_first_dropout (`float`, *optional*, defaults to 0.1):
|
102 |
+
Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
|
103 |
+
[`TFGPT2DoubleHeadsModel`].
|
104 |
+
|
105 |
+
The dropout ratio to be used after the projection and activation.
|
106 |
+
scale_attn_weights (`bool`, *optional*, defaults to `True`):
|
107 |
+
Scale attention weights by dividing by sqrt(hidden_size)..
|
108 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
109 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
110 |
+
scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`):
|
111 |
+
Whether to additionally scale attention weights by `1 / layer_idx + 1`.
|
112 |
+
reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`):
|
113 |
+
Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention
|
114 |
+
dot-product/softmax to float() when training with mixed precision.
|
115 |
+
|
116 |
+
Example:
|
117 |
+
|
118 |
+
```python
|
119 |
+
>>> from transformers import GPT2Config, GPT2Model
|
120 |
+
|
121 |
+
>>> # Initializing a GPT2 configuration
|
122 |
+
>>> configuration = GPT2Config()
|
123 |
+
|
124 |
+
>>> # Initializing a model (with random weights) from the configuration
|
125 |
+
>>> model = GPT2Model(configuration)
|
126 |
+
|
127 |
+
>>> # Accessing the model configuration
|
128 |
+
>>> configuration = model.config
|
129 |
+
```"""
|
130 |
+
|
131 |
+
model_type = "gpt2l"
|
132 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
133 |
+
attribute_map = {
|
134 |
+
"hidden_size": "n_embd",
|
135 |
+
"max_position_embeddings": "n_positions",
|
136 |
+
"num_attention_heads": "n_head",
|
137 |
+
"num_hidden_layers": "n_layer",
|
138 |
+
}
|
139 |
+
|
140 |
+
def __init__(
|
141 |
+
self,
|
142 |
+
vocab_size=50257,
|
143 |
+
n_positions=1024,
|
144 |
+
n_embd=768,
|
145 |
+
n_layer=12,
|
146 |
+
n_head=12,
|
147 |
+
n_inner=None,
|
148 |
+
activation_function="gelu_new",
|
149 |
+
resid_pdrop=0.1,
|
150 |
+
embd_pdrop=0.1,
|
151 |
+
attn_pdrop=0.1,
|
152 |
+
layer_norm_epsilon=1e-5,
|
153 |
+
initializer_range=0.02,
|
154 |
+
summary_type="cls_index",
|
155 |
+
summary_use_proj=True,
|
156 |
+
summary_activation=None,
|
157 |
+
summary_proj_to_labels=True,
|
158 |
+
summary_first_dropout=0.1,
|
159 |
+
scale_attn_weights=True,
|
160 |
+
use_cache=True,
|
161 |
+
bos_token_id=50256,
|
162 |
+
eos_token_id=50256,
|
163 |
+
scale_attn_by_inverse_layer_idx=False,
|
164 |
+
reorder_and_upcast_attn=False,
|
165 |
+
**kwargs,
|
166 |
+
):
|
167 |
+
self.vocab_size = vocab_size
|
168 |
+
self.n_positions = n_positions
|
169 |
+
self.n_embd = n_embd
|
170 |
+
self.n_layer = n_layer
|
171 |
+
self.n_head = n_head
|
172 |
+
self.n_inner = n_inner
|
173 |
+
self.activation_function = activation_function
|
174 |
+
self.resid_pdrop = resid_pdrop
|
175 |
+
self.embd_pdrop = embd_pdrop
|
176 |
+
self.attn_pdrop = attn_pdrop
|
177 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
178 |
+
self.initializer_range = initializer_range
|
179 |
+
self.summary_type = summary_type
|
180 |
+
self.summary_use_proj = summary_use_proj
|
181 |
+
self.summary_activation = summary_activation
|
182 |
+
self.summary_first_dropout = summary_first_dropout
|
183 |
+
self.summary_proj_to_labels = summary_proj_to_labels
|
184 |
+
self.scale_attn_weights = scale_attn_weights
|
185 |
+
self.use_cache = use_cache
|
186 |
+
self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx
|
187 |
+
self.reorder_and_upcast_attn = reorder_and_upcast_attn
|
188 |
+
|
189 |
+
self.bos_token_id = bos_token_id
|
190 |
+
self.eos_token_id = eos_token_id
|
191 |
+
|
192 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
193 |
+
|
194 |
+
|
195 |
+
class GPT2LOnnxConfig(OnnxConfigWithPast):
|
196 |
+
def __init__(
|
197 |
+
self,
|
198 |
+
config: PretrainedConfig,
|
199 |
+
task: str = "default",
|
200 |
+
patching_specs: List[PatchingSpec] = None,
|
201 |
+
use_past: bool = False,
|
202 |
+
):
|
203 |
+
super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past)
|
204 |
+
if not getattr(self._config, "pad_token_id", None):
|
205 |
+
# TODO: how to do that better?
|
206 |
+
self._config.pad_token_id = 0
|
207 |
+
|
208 |
+
@property
|
209 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
210 |
+
common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}})
|
211 |
+
if self.use_past:
|
212 |
+
self.fill_with_past_key_values_(common_inputs, direction="inputs")
|
213 |
+
common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"}
|
214 |
+
else:
|
215 |
+
common_inputs["attention_mask"] = {0: "batch", 1: "sequence"}
|
216 |
+
|
217 |
+
return common_inputs
|
218 |
+
|
219 |
+
@property
|
220 |
+
def num_layers(self) -> int:
|
221 |
+
return self._config.n_layer
|
222 |
+
|
223 |
+
@property
|
224 |
+
def num_attention_heads(self) -> int:
|
225 |
+
return self._config.n_head
|
226 |
+
|
227 |
+
def generate_dummy_inputs(
|
228 |
+
self,
|
229 |
+
tokenizer: PreTrainedTokenizer,
|
230 |
+
batch_size: int = -1,
|
231 |
+
seq_length: int = -1,
|
232 |
+
is_pair: bool = False,
|
233 |
+
framework: Optional[TensorType] = None,
|
234 |
+
) -> Mapping[str, Any]:
|
235 |
+
common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
|
236 |
+
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
237 |
+
)
|
238 |
+
|
239 |
+
# We need to order the input in the way they appears in the forward()
|
240 |
+
ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]})
|
241 |
+
|
242 |
+
# Need to add the past_keys
|
243 |
+
if self.use_past:
|
244 |
+
if not is_torch_available():
|
245 |
+
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
|
246 |
+
else:
|
247 |
+
import torch
|
248 |
+
|
249 |
+
batch, seqlen = common_inputs["input_ids"].shape
|
250 |
+
# Not using the same length for past_key_values
|
251 |
+
past_key_values_length = seqlen + 2
|
252 |
+
past_shape = (
|
253 |
+
batch,
|
254 |
+
self.num_attention_heads,
|
255 |
+
past_key_values_length,
|
256 |
+
self._config.hidden_size // self.num_attention_heads,
|
257 |
+
)
|
258 |
+
ordered_inputs["past_key_values"] = [
|
259 |
+
(torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(self.num_layers)
|
260 |
+
]
|
261 |
+
|
262 |
+
ordered_inputs["attention_mask"] = common_inputs["attention_mask"]
|
263 |
+
if self.use_past:
|
264 |
+
mask_dtype = ordered_inputs["attention_mask"].dtype
|
265 |
+
ordered_inputs["attention_mask"] = torch.cat(
|
266 |
+
[ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
|
267 |
+
)
|
268 |
+
|
269 |
+
return ordered_inputs
|
270 |
+
|
271 |
+
@property
|
272 |
+
def default_onnx_opset(self) -> int:
|
273 |
+
return 13
|
modeling_gpt2l.py
ADDED
@@ -0,0 +1,974 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
|
2 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PyTorch OpenAI GPT-2 model."""
|
16 |
+
|
17 |
+
import os
|
18 |
+
import warnings
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from typing import List, Optional, Tuple
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import torch.nn as nn
|
24 |
+
from torch.nn import CrossEntropyLoss, MSELoss
|
25 |
+
|
26 |
+
from transformers.activations import ACT2FN
|
27 |
+
from .configuration_gpt2l import GPT2LConfig
|
28 |
+
from transformers.file_utils import (
|
29 |
+
ModelOutput,
|
30 |
+
add_start_docstrings,
|
31 |
+
add_start_docstrings_to_model_forward,
|
32 |
+
)
|
33 |
+
from transformers.modeling_outputs import (
|
34 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
35 |
+
# CausalLMOutputWithPastAndCrossAttentions,
|
36 |
+
CausalLMOutputWithPast,
|
37 |
+
SequenceClassifierOutputWithPast,
|
38 |
+
)
|
39 |
+
from transformers.modeling_utils import (
|
40 |
+
Conv1D,
|
41 |
+
PreTrainedModel,
|
42 |
+
SequenceSummary,
|
43 |
+
find_pruneable_heads_and_indices,
|
44 |
+
prune_conv1d_layer,
|
45 |
+
)
|
46 |
+
from transformers.utils import logging
|
47 |
+
|
48 |
+
|
49 |
+
logger = logging.get_logger(__name__)
|
50 |
+
|
51 |
+
_CONFIG_FOR_DOC = "GPT2LConfig"
|
52 |
+
_TOKENIZER_FOR_DOC = "GPT2Tokenizer"
|
53 |
+
|
54 |
+
GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
55 |
+
"gpt2",
|
56 |
+
"gpt2-medium",
|
57 |
+
"gpt2-large",
|
58 |
+
"gpt2-xl",
|
59 |
+
"distilgpt2",
|
60 |
+
# See all GPT-2 models at https://huggingface.co/models?filter=gpt2
|
61 |
+
]
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
class Attention(nn.Module):
|
66 |
+
def __init__(self, nx, n_ctx, config, scale=False, is_cross_attention=False):
|
67 |
+
super().__init__()
|
68 |
+
|
69 |
+
n_state = nx # in Attention: n_state=768 (nx=n_embd)
|
70 |
+
# [switch nx => n_state from Block to Attention to keep identical to TF implem]
|
71 |
+
assert n_state % config.n_head == 0
|
72 |
+
self.register_buffer(
|
73 |
+
"bias", torch.tril(torch.ones((n_ctx, n_ctx), dtype=torch.uint8)).view(1, 1, n_ctx, n_ctx)
|
74 |
+
)
|
75 |
+
self.register_buffer("masked_bias", torch.tensor(-1e4))
|
76 |
+
self.n_head = config.n_head
|
77 |
+
self.split_size = n_state
|
78 |
+
self.scale = scale
|
79 |
+
self.is_cross_attention = is_cross_attention
|
80 |
+
if self.is_cross_attention:
|
81 |
+
# self.c_attn = Conv1D(2 * n_state, nx)
|
82 |
+
# self.q_attn = Conv1D(n_state, nx)
|
83 |
+
self.c_attn = nn.Linear(nx, 2 * n_state)
|
84 |
+
self.q_attn = nn.Linear(nx, n_state)
|
85 |
+
else:
|
86 |
+
self.c_attn = nn.Linear(nx, 3 * n_state)
|
87 |
+
# self.c_proj = Conv1D(n_state, nx)
|
88 |
+
self.c_proj = nn.Linear(nx, n_state)
|
89 |
+
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
90 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
91 |
+
self.pruned_heads = set()
|
92 |
+
|
93 |
+
def prune_heads(self, heads):
|
94 |
+
if len(heads) == 0:
|
95 |
+
return
|
96 |
+
heads, index = find_pruneable_heads_and_indices(
|
97 |
+
heads, self.n_head, self.split_size // self.n_head, self.pruned_heads
|
98 |
+
)
|
99 |
+
index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])
|
100 |
+
|
101 |
+
# Prune conv1d layers
|
102 |
+
self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
|
103 |
+
self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
|
104 |
+
|
105 |
+
# Update hyper params
|
106 |
+
self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
|
107 |
+
self.n_head = self.n_head - len(heads)
|
108 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
109 |
+
|
110 |
+
def _attn(self, q, k, v, attention_mask=None, head_mask=None, output_attentions=False):
|
111 |
+
w = torch.matmul(q, k)
|
112 |
+
if self.scale:
|
113 |
+
w = w / (float(v.size(-1)) ** 0.5)
|
114 |
+
nd, ns = w.size(-2), w.size(-1)
|
115 |
+
|
116 |
+
if not self.is_cross_attention:
|
117 |
+
# if only "normal" attention layer implements causal mask
|
118 |
+
mask = self.bias[:, :, ns - nd : ns, :ns]
|
119 |
+
w = torch.where(mask.bool(), w, self.masked_bias.to(w.dtype))
|
120 |
+
|
121 |
+
if attention_mask is not None:
|
122 |
+
# Apply the attention mask
|
123 |
+
w = w + attention_mask
|
124 |
+
|
125 |
+
w = nn.Softmax(dim=-1)(w)
|
126 |
+
w = self.attn_dropout(w)
|
127 |
+
|
128 |
+
# Mask heads if we want to
|
129 |
+
if head_mask is not None:
|
130 |
+
w = w * head_mask
|
131 |
+
|
132 |
+
outputs = [torch.matmul(w, v)]
|
133 |
+
if output_attentions:
|
134 |
+
outputs.append(w)
|
135 |
+
return outputs
|
136 |
+
|
137 |
+
def merge_heads(self, x):
|
138 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
139 |
+
new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
|
140 |
+
return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states
|
141 |
+
|
142 |
+
def split_heads(self, x, k=False):
|
143 |
+
new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
|
144 |
+
x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states
|
145 |
+
if k:
|
146 |
+
return x.permute(0, 2, 3, 1) # (batch, head, head_features, seq_length)
|
147 |
+
else:
|
148 |
+
return x.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
|
149 |
+
|
150 |
+
def forward(
|
151 |
+
self,
|
152 |
+
hidden_states,
|
153 |
+
layer_past=None,
|
154 |
+
attention_mask=None,
|
155 |
+
head_mask=None,
|
156 |
+
encoder_hidden_states=None,
|
157 |
+
encoder_attention_mask=None,
|
158 |
+
use_cache=False,
|
159 |
+
output_attentions=False,
|
160 |
+
):
|
161 |
+
if encoder_hidden_states is not None:
|
162 |
+
assert hasattr(
|
163 |
+
self, "q_attn"
|
164 |
+
), "If class is used as cross attention, the weights `q_attn` have to be defined. Please make sure to instantiate class with `Attention(..., is_cross_attention=True)`."
|
165 |
+
query = self.q_attn(hidden_states)
|
166 |
+
key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
|
167 |
+
attention_mask = encoder_attention_mask
|
168 |
+
else:
|
169 |
+
query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
|
170 |
+
|
171 |
+
query = self.split_heads(query)
|
172 |
+
key = self.split_heads(key, k=True)
|
173 |
+
value = self.split_heads(value)
|
174 |
+
if layer_past is not None:
|
175 |
+
past_key, past_value = layer_past[0].transpose(-2, -1), layer_past[1] # transpose back cf below
|
176 |
+
key = torch.cat((past_key, key), dim=-1)
|
177 |
+
value = torch.cat((past_value, value), dim=-2)
|
178 |
+
|
179 |
+
if use_cache is True:
|
180 |
+
present = torch.stack((key.transpose(-2, -1), value)) # transpose to have same shapes for stacking
|
181 |
+
else:
|
182 |
+
present = (None,)
|
183 |
+
|
184 |
+
attn_outputs = self._attn(query, key, value, attention_mask, head_mask, output_attentions)
|
185 |
+
a = attn_outputs[0]
|
186 |
+
|
187 |
+
a = self.merge_heads(a)
|
188 |
+
a = self.c_proj(a)
|
189 |
+
a = self.resid_dropout(a)
|
190 |
+
|
191 |
+
outputs = [a, present] + attn_outputs[1:]
|
192 |
+
return outputs # a, present, (attentions)
|
193 |
+
|
194 |
+
|
195 |
+
class MLP(nn.Module):
|
196 |
+
def __init__(self, n_state, config): # in MLP: n_state=3072 (4 * n_embd)
|
197 |
+
super().__init__()
|
198 |
+
nx = config.n_embd
|
199 |
+
# self.c_fc = Conv1D(n_state, nx)
|
200 |
+
# self.c_proj = Conv1D(nx, n_state)
|
201 |
+
self.c_fc = nn.Linear(nx, n_state)
|
202 |
+
self.c_proj = nn.Linear(n_state, nx)
|
203 |
+
self.act = ACT2FN[config.activation_function]
|
204 |
+
self.dropout = nn.Dropout(config.resid_pdrop)
|
205 |
+
|
206 |
+
def forward(self, x):
|
207 |
+
h = self.act(self.c_fc(x))
|
208 |
+
h2 = self.c_proj(h)
|
209 |
+
return self.dropout(h2)
|
210 |
+
|
211 |
+
|
212 |
+
class Block(nn.Module):
|
213 |
+
def __init__(self, n_ctx, config, scale=False):
|
214 |
+
super().__init__()
|
215 |
+
hidden_size = config.n_embd
|
216 |
+
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
|
217 |
+
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
218 |
+
self.attn = Attention(hidden_size, n_ctx, config, scale)
|
219 |
+
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
220 |
+
if config.add_cross_attention:
|
221 |
+
self.crossattention = Attention(hidden_size, n_ctx, config, scale, is_cross_attention=True)
|
222 |
+
self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
223 |
+
self.mlp = MLP(inner_dim, config)
|
224 |
+
|
225 |
+
def forward(
|
226 |
+
self,
|
227 |
+
hidden_states,
|
228 |
+
layer_past=None,
|
229 |
+
attention_mask=None,
|
230 |
+
head_mask=None,
|
231 |
+
encoder_hidden_states=None,
|
232 |
+
encoder_attention_mask=None,
|
233 |
+
use_cache=False,
|
234 |
+
output_attentions=False,
|
235 |
+
):
|
236 |
+
attn_outputs = self.attn(
|
237 |
+
self.ln_1(hidden_states),
|
238 |
+
layer_past=layer_past,
|
239 |
+
attention_mask=attention_mask,
|
240 |
+
head_mask=head_mask,
|
241 |
+
use_cache=use_cache,
|
242 |
+
output_attentions=output_attentions,
|
243 |
+
)
|
244 |
+
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
245 |
+
outputs = attn_outputs[1:]
|
246 |
+
# residual connection
|
247 |
+
hidden_states = attn_output + hidden_states
|
248 |
+
|
249 |
+
if encoder_hidden_states is not None:
|
250 |
+
# add one self-attention block for cross-attention
|
251 |
+
assert hasattr(
|
252 |
+
self, "crossattention"
|
253 |
+
), f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
|
254 |
+
cross_attn_outputs = self.crossattention(
|
255 |
+
self.ln_cross_attn(hidden_states),
|
256 |
+
attention_mask=attention_mask,
|
257 |
+
head_mask=head_mask,
|
258 |
+
encoder_hidden_states=encoder_hidden_states,
|
259 |
+
encoder_attention_mask=encoder_attention_mask,
|
260 |
+
output_attentions=output_attentions,
|
261 |
+
)
|
262 |
+
attn_output = cross_attn_outputs[0]
|
263 |
+
# residual connection
|
264 |
+
hidden_states = hidden_states + attn_output
|
265 |
+
outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights
|
266 |
+
|
267 |
+
feed_forward_hidden_states = self.mlp(self.ln_2(hidden_states))
|
268 |
+
# residual connection
|
269 |
+
hidden_states = hidden_states + feed_forward_hidden_states
|
270 |
+
|
271 |
+
outputs = [hidden_states] + outputs
|
272 |
+
return outputs # hidden_states, present, (attentions, cross_attentions)
|
273 |
+
|
274 |
+
|
275 |
+
class GPT2LPreTrainedModel(PreTrainedModel):
|
276 |
+
"""
|
277 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
278 |
+
models.
|
279 |
+
"""
|
280 |
+
|
281 |
+
config_class = GPT2LConfig
|
282 |
+
base_model_prefix = "transformer"
|
283 |
+
|
284 |
+
def __init__(self, *inputs, **kwargs):
|
285 |
+
super().__init__(*inputs, **kwargs)
|
286 |
+
|
287 |
+
def _init_weights(self, module):
|
288 |
+
"""Initialize the weights."""
|
289 |
+
if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)):
|
290 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
291 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
292 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
293 |
+
if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None:
|
294 |
+
module.bias.data.zero_()
|
295 |
+
elif isinstance(module, nn.LayerNorm):
|
296 |
+
module.bias.data.zero_()
|
297 |
+
module.weight.data.fill_(1.0)
|
298 |
+
|
299 |
+
|
300 |
+
class GPT2LDoubleHeadsModelOutput(ModelOutput):
|
301 |
+
"""
|
302 |
+
Base class for outputs of models predicting if two sentences are consecutive or not.
|
303 |
+
|
304 |
+
Args:
|
305 |
+
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when ``labels`` is provided):
|
306 |
+
Language modeling loss.
|
307 |
+
mc_loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`mc_labels` is provided):
|
308 |
+
Multiple choice classification loss.
|
309 |
+
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices, sequence_length, config.vocab_size)`):
|
310 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
311 |
+
mc_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices)`):
|
312 |
+
Prediction scores of the multiple choice classification head (scores for each choice before SoftMax).
|
313 |
+
past_key_values (:obj:`List[torch.FloatTensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
|
314 |
+
List of :obj:`torch.FloatTensor` of length :obj:`config.n_layers`, with each tensor of shape :obj:`(2,
|
315 |
+
batch_size, num_heads, sequence_length, embed_size_per_head)`).
|
316 |
+
|
317 |
+
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
|
318 |
+
:obj:`past_key_values` input) to speed up sequential decoding.
|
319 |
+
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
320 |
+
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
321 |
+
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
322 |
+
|
323 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
324 |
+
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
325 |
+
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
|
326 |
+
sequence_length, sequence_length)`.
|
327 |
+
|
328 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
329 |
+
heads.
|
330 |
+
"""
|
331 |
+
|
332 |
+
loss: Optional[torch.FloatTensor] = None
|
333 |
+
mc_loss: Optional[torch.FloatTensor] = None
|
334 |
+
logits: torch.FloatTensor = None
|
335 |
+
mc_logits: torch.FloatTensor = None
|
336 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None
|
337 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
338 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
339 |
+
|
340 |
+
|
341 |
+
|
342 |
+
GPT2L_START_DOCSTRING = r"""
|
343 |
+
|
344 |
+
This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic
|
345 |
+
methods the library implements for all its model (such as downloading or saving, resizing the input embeddings,
|
346 |
+
pruning heads etc.)
|
347 |
+
|
348 |
+
This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__
|
349 |
+
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
|
350 |
+
general usage and behavior.
|
351 |
+
|
352 |
+
Parameters:
|
353 |
+
config (:class:`~transformers.GPT2LConfig`): Model configuration class with all the parameters of the model.
|
354 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
355 |
+
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
|
356 |
+
weights.
|
357 |
+
"""
|
358 |
+
|
359 |
+
GPT2_INPUTS_DOCSTRING = r"""
|
360 |
+
Args:
|
361 |
+
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, input_ids_length)`):
|
362 |
+
:obj:`input_ids_length` = ``sequence_length`` if :obj:`past_key_values` is ``None`` else
|
363 |
+
``past_key_values[0].shape[-2]`` (``sequence_length`` of input past key value states). Indices of input
|
364 |
+
sequence tokens in the vocabulary.
|
365 |
+
|
366 |
+
If :obj:`past_key_values` is used, only ``input_ids`` that do not have their past calculated should be
|
367 |
+
passed as ``input_ids``.
|
368 |
+
|
369 |
+
Indices can be obtained using :class:`~transformers.GPT2Tokenizer`. See
|
370 |
+
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
|
371 |
+
details.
|
372 |
+
|
373 |
+
`What are input IDs? <../glossary.html#input-ids>`__
|
374 |
+
past_key_values (:obj:`List[torch.FloatTensor]` of length :obj:`config.n_layers`):
|
375 |
+
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
|
376 |
+
:obj:`past_key_values` output below). Can be used to speed up sequential decoding. The ``input_ids`` which
|
377 |
+
have their past given to this model should not be passed as ``input_ids`` as they have already been
|
378 |
+
computed.
|
379 |
+
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
380 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
|
381 |
+
|
382 |
+
- 1 for tokens that are **not masked**,
|
383 |
+
- 0 for tokens that are **masked**.
|
384 |
+
|
385 |
+
`What are attention masks? <../glossary.html#attention-mask>`__
|
386 |
+
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, input_ids_length)`, `optional`):
|
387 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
|
388 |
+
1]``:
|
389 |
+
|
390 |
+
- 0 corresponds to a `sentence A` token,
|
391 |
+
- 1 corresponds to a `sentence B` token.
|
392 |
+
|
393 |
+
`What are token type IDs? <../glossary.html#token-type-ids>`_
|
394 |
+
position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
395 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
|
396 |
+
config.max_position_embeddings - 1]``.
|
397 |
+
|
398 |
+
`What are position IDs? <../glossary.html#position-ids>`_
|
399 |
+
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
|
400 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``:
|
401 |
+
|
402 |
+
- 1 indicates the head is **not masked**,
|
403 |
+
- 0 indicates the head is **masked**.
|
404 |
+
|
405 |
+
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
406 |
+
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
|
407 |
+
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
|
408 |
+
vectors than the model's internal embedding lookup matrix.
|
409 |
+
|
410 |
+
If :obj:`past_key_values` is used, optionally only the last :obj:`inputs_embeds` have to be input (see
|
411 |
+
:obj:`past_key_values`).
|
412 |
+
use_cache (:obj:`bool`, `optional`):
|
413 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
414 |
+
decoding (see :obj:`past_key_values`).
|
415 |
+
output_attentions (:obj:`bool`, `optional`):
|
416 |
+
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
|
417 |
+
tensors for more detail.
|
418 |
+
output_hidden_states (:obj:`bool`, `optional`):
|
419 |
+
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
|
420 |
+
more detail.
|
421 |
+
return_dict (:obj:`bool`, `optional`):
|
422 |
+
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
|
423 |
+
"""
|
424 |
+
|
425 |
+
|
426 |
+
class GPT2LModel(GPT2LPreTrainedModel):
|
427 |
+
def __init__(self, config):
|
428 |
+
super().__init__(config)
|
429 |
+
|
430 |
+
self.wte = nn.Embedding(config.vocab_size, config.n_embd)
|
431 |
+
self.wpe = nn.Embedding(config.n_positions, config.n_embd)
|
432 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
433 |
+
self.h = nn.ModuleList([Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)])
|
434 |
+
self.ln_f = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
435 |
+
|
436 |
+
self.init_weights()
|
437 |
+
|
438 |
+
def get_input_embeddings(self):
|
439 |
+
return self.wte
|
440 |
+
|
441 |
+
def set_input_embeddings(self, new_embeddings):
|
442 |
+
self.wte = new_embeddings
|
443 |
+
|
444 |
+
def _prune_heads(self, heads_to_prune):
|
445 |
+
"""
|
446 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
|
447 |
+
"""
|
448 |
+
for layer, heads in heads_to_prune.items():
|
449 |
+
self.h[layer].attn.prune_heads(heads)
|
450 |
+
|
451 |
+
def forward(
|
452 |
+
self,
|
453 |
+
input_ids=None,
|
454 |
+
past_key_values=None,
|
455 |
+
attention_mask=None,
|
456 |
+
token_type_ids=None,
|
457 |
+
position_ids=None,
|
458 |
+
head_mask=None,
|
459 |
+
inputs_embeds=None,
|
460 |
+
encoder_hidden_states=None,
|
461 |
+
encoder_attention_mask=None,
|
462 |
+
use_cache=None,
|
463 |
+
output_attentions=None,
|
464 |
+
output_hidden_states=None,
|
465 |
+
return_dict=None,
|
466 |
+
**kwargs,
|
467 |
+
):
|
468 |
+
if "past" in kwargs:
|
469 |
+
warnings.warn(
|
470 |
+
"The `past` argument is deprecated and will be removed in a future version, use `past_key_values` instead.",
|
471 |
+
FutureWarning,
|
472 |
+
)
|
473 |
+
past_key_values = kwargs.pop("past")
|
474 |
+
assert kwargs == {}, f"Unexpected keyword arguments: {list(kwargs.keys())}."
|
475 |
+
|
476 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
477 |
+
output_hidden_states = (
|
478 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
479 |
+
)
|
480 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
481 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
482 |
+
|
483 |
+
if input_ids is not None and inputs_embeds is not None:
|
484 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
485 |
+
elif input_ids is not None:
|
486 |
+
input_shape = input_ids.size()
|
487 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
488 |
+
batch_size = input_ids.shape[0]
|
489 |
+
elif inputs_embeds is not None:
|
490 |
+
input_shape = inputs_embeds.size()[:-1]
|
491 |
+
batch_size = inputs_embeds.shape[0]
|
492 |
+
else:
|
493 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
494 |
+
|
495 |
+
if token_type_ids is not None:
|
496 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
497 |
+
if position_ids is not None:
|
498 |
+
position_ids = position_ids.view(-1, input_shape[-1])
|
499 |
+
|
500 |
+
if past_key_values is None:
|
501 |
+
past_length = 0
|
502 |
+
past_key_values = [None] * len(self.h)
|
503 |
+
else:
|
504 |
+
past_length = past_key_values[0][0].size(-2)
|
505 |
+
if position_ids is None:
|
506 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
507 |
+
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
508 |
+
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
509 |
+
|
510 |
+
# Attention mask.
|
511 |
+
if attention_mask is not None:
|
512 |
+
assert batch_size > 0, "batch_size has to be defined and > 0"
|
513 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
514 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
515 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
516 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
517 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
518 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
519 |
+
attention_mask = attention_mask[:, None, None, :]
|
520 |
+
|
521 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
522 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
523 |
+
# positions we want to attend and -10000.0 for masked positions.
|
524 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
525 |
+
# effectively the same as removing these entirely.
|
526 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
527 |
+
attention_mask = (1.0 - attention_mask) * -10000.0
|
528 |
+
|
529 |
+
# If a 2D ou 3D attention mask is provided for the cross-attention
|
530 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
531 |
+
if self.config.add_cross_attention and encoder_hidden_states is not None:
|
532 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
533 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
534 |
+
if encoder_attention_mask is None:
|
535 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
536 |
+
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
537 |
+
else:
|
538 |
+
encoder_attention_mask = None
|
539 |
+
|
540 |
+
# Prepare head mask if needed
|
541 |
+
# 1.0 in head_mask indicate we keep the head
|
542 |
+
# attention_probs has shape bsz x n_heads x N x N
|
543 |
+
# head_mask has shape n_layer x batch x n_heads x N x N
|
544 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
545 |
+
|
546 |
+
if inputs_embeds is None:
|
547 |
+
inputs_embeds = self.wte(input_ids)
|
548 |
+
position_embeds = self.wpe(position_ids)
|
549 |
+
hidden_states = inputs_embeds + position_embeds
|
550 |
+
|
551 |
+
if token_type_ids is not None:
|
552 |
+
token_type_embeds = self.wte(token_type_ids)
|
553 |
+
hidden_states = hidden_states + token_type_embeds
|
554 |
+
|
555 |
+
hidden_states = self.drop(hidden_states)
|
556 |
+
|
557 |
+
output_shape = input_shape + (hidden_states.size(-1),)
|
558 |
+
|
559 |
+
presents = () if use_cache else None
|
560 |
+
all_self_attentions = () if output_attentions else None
|
561 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
562 |
+
all_hidden_states = () if output_hidden_states else None
|
563 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
564 |
+
if output_hidden_states:
|
565 |
+
all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)
|
566 |
+
|
567 |
+
if getattr(self.config, "gradient_checkpointing", False):
|
568 |
+
|
569 |
+
def create_custom_forward(module):
|
570 |
+
def custom_forward(*inputs):
|
571 |
+
# checkpointing only works with tuple returns, not with lists
|
572 |
+
return tuple(output for output in module(*inputs, use_cache, output_attentions))
|
573 |
+
|
574 |
+
return custom_forward
|
575 |
+
|
576 |
+
outputs = torch.utils.checkpoint.checkpoint(
|
577 |
+
create_custom_forward(block),
|
578 |
+
hidden_states,
|
579 |
+
layer_past,
|
580 |
+
attention_mask,
|
581 |
+
head_mask[i],
|
582 |
+
encoder_hidden_states,
|
583 |
+
encoder_attention_mask,
|
584 |
+
)
|
585 |
+
else:
|
586 |
+
outputs = block(
|
587 |
+
hidden_states,
|
588 |
+
layer_past=layer_past,
|
589 |
+
attention_mask=attention_mask,
|
590 |
+
head_mask=head_mask[i],
|
591 |
+
encoder_hidden_states=encoder_hidden_states,
|
592 |
+
encoder_attention_mask=encoder_attention_mask,
|
593 |
+
use_cache=use_cache,
|
594 |
+
output_attentions=output_attentions,
|
595 |
+
)
|
596 |
+
|
597 |
+
hidden_states, present = outputs[:2]
|
598 |
+
if use_cache is True:
|
599 |
+
presents = presents + (present,)
|
600 |
+
|
601 |
+
if output_attentions:
|
602 |
+
all_self_attentions = all_self_attentions + (outputs[2],)
|
603 |
+
if self.config.add_cross_attention:
|
604 |
+
all_cross_attentions = all_cross_attentions + (outputs[3],)
|
605 |
+
|
606 |
+
hidden_states = self.ln_f(hidden_states)
|
607 |
+
|
608 |
+
hidden_states = hidden_states.view(*output_shape)
|
609 |
+
# Add last hidden state
|
610 |
+
if output_hidden_states:
|
611 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
612 |
+
|
613 |
+
if not return_dict:
|
614 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
615 |
+
|
616 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
617 |
+
last_hidden_state=hidden_states,
|
618 |
+
past_key_values=presents,
|
619 |
+
hidden_states=all_hidden_states,
|
620 |
+
attentions=all_self_attentions,
|
621 |
+
cross_attentions=all_cross_attentions,
|
622 |
+
)
|
623 |
+
|
624 |
+
|
625 |
+
class GPT2LLMHeadModel(GPT2LPreTrainedModel):
|
626 |
+
authorized_missing_keys = [r"h\.\d+\.attn\.masked_bias", r"lm_head\.weight"]
|
627 |
+
|
628 |
+
def __init__(self, config):
|
629 |
+
super().__init__(config)
|
630 |
+
self.transformer = GPT2LModel(config)
|
631 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
632 |
+
|
633 |
+
self.init_weights()
|
634 |
+
|
635 |
+
def get_output_embeddings(self):
|
636 |
+
return self.lm_head
|
637 |
+
|
638 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
639 |
+
# only last token for inputs_ids if past is defined in kwargs
|
640 |
+
if past:
|
641 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
642 |
+
|
643 |
+
attention_mask = kwargs.get("attention_mask", None)
|
644 |
+
position_ids = kwargs.get("position_ids", None)
|
645 |
+
|
646 |
+
if attention_mask is not None and position_ids is None:
|
647 |
+
# create position_ids on the fly for batch generation
|
648 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
649 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
650 |
+
if past:
|
651 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
652 |
+
else:
|
653 |
+
position_ids = None
|
654 |
+
return {
|
655 |
+
"input_ids": input_ids,
|
656 |
+
"past_key_values": past,
|
657 |
+
"use_cache": kwargs.get("use_cache"),
|
658 |
+
"position_ids": position_ids,
|
659 |
+
"attention_mask": attention_mask,
|
660 |
+
}
|
661 |
+
|
662 |
+
|
663 |
+
def forward(
|
664 |
+
self,
|
665 |
+
input_ids=None,
|
666 |
+
past_key_values=None,
|
667 |
+
attention_mask=None,
|
668 |
+
token_type_ids=None,
|
669 |
+
position_ids=None,
|
670 |
+
head_mask=None,
|
671 |
+
inputs_embeds=None,
|
672 |
+
encoder_hidden_states=None,
|
673 |
+
encoder_attention_mask=None,
|
674 |
+
labels=None,
|
675 |
+
use_cache=None,
|
676 |
+
output_attentions=None,
|
677 |
+
output_hidden_states=None,
|
678 |
+
return_dict=None,
|
679 |
+
**kwargs,
|
680 |
+
):
|
681 |
+
r"""
|
682 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
683 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
684 |
+
``labels = input_ids`` Indices are selected in ``[-100, 0, ..., config.vocab_size]`` All labels set to
|
685 |
+
``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]``
|
686 |
+
"""
|
687 |
+
if "past" in kwargs:
|
688 |
+
warnings.warn(
|
689 |
+
"The `past` argument is deprecated and will be removed in a future version, use `past_key_values` instead.",
|
690 |
+
FutureWarning,
|
691 |
+
)
|
692 |
+
past_key_values = kwargs.pop("past")
|
693 |
+
assert kwargs == {}, f"Unexpected keyword arguments: {list(kwargs.keys())}."
|
694 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
695 |
+
|
696 |
+
transformer_outputs = self.transformer(
|
697 |
+
input_ids,
|
698 |
+
past_key_values=past_key_values,
|
699 |
+
attention_mask=attention_mask,
|
700 |
+
token_type_ids=token_type_ids,
|
701 |
+
position_ids=position_ids,
|
702 |
+
head_mask=head_mask,
|
703 |
+
inputs_embeds=inputs_embeds,
|
704 |
+
encoder_hidden_states=encoder_hidden_states,
|
705 |
+
encoder_attention_mask=encoder_attention_mask,
|
706 |
+
use_cache=use_cache,
|
707 |
+
output_attentions=output_attentions,
|
708 |
+
output_hidden_states=output_hidden_states,
|
709 |
+
return_dict=return_dict,
|
710 |
+
)
|
711 |
+
hidden_states = transformer_outputs[0]
|
712 |
+
|
713 |
+
lm_logits = self.lm_head(hidden_states)
|
714 |
+
|
715 |
+
loss = None
|
716 |
+
if labels is not None:
|
717 |
+
# Shift so that tokens < n predict n
|
718 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
719 |
+
shift_labels = labels[..., 1:].contiguous()
|
720 |
+
# Flatten the tokens
|
721 |
+
loss_fct = CrossEntropyLoss()
|
722 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
723 |
+
|
724 |
+
if not return_dict:
|
725 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
726 |
+
return ((loss,) + output) if loss is not None else output
|
727 |
+
|
728 |
+
return CausalLMOutputWithPast(
|
729 |
+
loss=loss,
|
730 |
+
logits=lm_logits,
|
731 |
+
past_key_values=transformer_outputs.past_key_values,
|
732 |
+
hidden_states=transformer_outputs.hidden_states,
|
733 |
+
attentions=transformer_outputs.attentions,
|
734 |
+
# cross_attentions=transformer_outputs.cross_attentions,
|
735 |
+
)
|
736 |
+
|
737 |
+
class GPT2LDoubleHeadsModel(GPT2LPreTrainedModel):
|
738 |
+
def __init__(self, config):
|
739 |
+
super().__init__(config)
|
740 |
+
config.num_labels = 1
|
741 |
+
self.transformer = GPT2LModel(config)
|
742 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
743 |
+
self.multiple_choice_head = SequenceSummary(config)
|
744 |
+
|
745 |
+
self.init_weights()
|
746 |
+
|
747 |
+
def get_output_embeddings(self):
|
748 |
+
return self.lm_head
|
749 |
+
|
750 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
751 |
+
# only last token for inputs_ids if past is defined in kwargs
|
752 |
+
if past:
|
753 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
754 |
+
|
755 |
+
return {
|
756 |
+
"input_ids": input_ids,
|
757 |
+
"past_key_values": past,
|
758 |
+
"use_cache": kwargs.get("use_cache"),
|
759 |
+
}
|
760 |
+
|
761 |
+
def forward(
|
762 |
+
self,
|
763 |
+
input_ids=None,
|
764 |
+
past_key_values=None,
|
765 |
+
attention_mask=None,
|
766 |
+
token_type_ids=None,
|
767 |
+
position_ids=None,
|
768 |
+
head_mask=None,
|
769 |
+
inputs_embeds=None,
|
770 |
+
mc_token_ids=None,
|
771 |
+
labels=None,
|
772 |
+
mc_labels=None,
|
773 |
+
use_cache=None,
|
774 |
+
output_attentions=None,
|
775 |
+
output_hidden_states=None,
|
776 |
+
return_dict=None,
|
777 |
+
**kwargs,
|
778 |
+
):
|
779 |
+
r"""
|
780 |
+
mc_token_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, num_choices)`, `optional`, default to index of the last token of the input):
|
781 |
+
Index of the classification token in each input sequence. Selected in the range ``[0, input_ids.size(-1) -
|
782 |
+
1[``.
|
783 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
784 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
785 |
+
``labels = input_ids`` Indices are selected in ``[-1, 0, ..., config.vocab_size]`` All labels set to
|
786 |
+
``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]``
|
787 |
+
mc_labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size)`, `optional`):
|
788 |
+
Labels for computing the multiple choice classification loss. Indices should be in ``[0, ...,
|
789 |
+
num_choices]`` where `num_choices` is the size of the second dimension of the input tensors. (see
|
790 |
+
`input_ids` above)
|
791 |
+
kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`):
|
792 |
+
Used to hide legacy arguments that have been deprecated.
|
793 |
+
|
794 |
+
Return:
|
795 |
+
|
796 |
+
Example::
|
797 |
+
|
798 |
+
>>> import torch
|
799 |
+
>>> from transformers import GPT2Tokenizer, GPT2DoubleHeadsModel
|
800 |
+
|
801 |
+
>>> tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
802 |
+
>>> model = GPT2DoubleHeadsModel.from_pretrained('gpt2, return_dict=True)
|
803 |
+
|
804 |
+
>>> # Add a [CLS] to the vocabulary (we should train it also!)
|
805 |
+
>>> num_added_tokens = tokenizer.add_special_tokens({'cls_token': '[CLS]'})
|
806 |
+
|
807 |
+
>>> embedding_layer = model.resize_token_embeddings(len(tokenizer)) # Update the model embeddings with the new vocabulary size
|
808 |
+
|
809 |
+
>>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
|
810 |
+
>>> encoded_choices = [tokenizer.encode(s) for s in choices]
|
811 |
+
>>> cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices]
|
812 |
+
|
813 |
+
>>> input_ids = torch.tensor(encoded_choices).unsqueeze(0) # Batch size: 1, number of choices: 2
|
814 |
+
>>> mc_token_ids = torch.tensor([cls_token_location]) # Batch size: 1
|
815 |
+
|
816 |
+
>>> outputs = model(input_ids, mc_token_ids=mc_token_ids)
|
817 |
+
>>> lm_logits = outputs.lm_logits
|
818 |
+
>>> mc_logits = outputs.mc_logits
|
819 |
+
|
820 |
+
"""
|
821 |
+
if "lm_labels" in kwargs:
|
822 |
+
warnings.warn(
|
823 |
+
"The `lm_labels` argument is deprecated and will be removed in a future version, use `labels` instead.",
|
824 |
+
FutureWarning,
|
825 |
+
)
|
826 |
+
labels = kwargs.pop("lm_labels")
|
827 |
+
if "past" in kwargs:
|
828 |
+
warnings.warn(
|
829 |
+
"The `past` argument is deprecated and will be removed in a future version, use `past_key_values` instead.",
|
830 |
+
FutureWarning,
|
831 |
+
)
|
832 |
+
past_key_values = kwargs.pop("past")
|
833 |
+
assert kwargs == {}, f"Unexpected keyword arguments: {list(kwargs.keys())}."
|
834 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
835 |
+
|
836 |
+
transformer_outputs = self.transformer(
|
837 |
+
input_ids,
|
838 |
+
past_key_values=past_key_values,
|
839 |
+
attention_mask=attention_mask,
|
840 |
+
token_type_ids=token_type_ids,
|
841 |
+
position_ids=position_ids,
|
842 |
+
head_mask=head_mask,
|
843 |
+
inputs_embeds=inputs_embeds,
|
844 |
+
use_cache=use_cache,
|
845 |
+
output_attentions=output_attentions,
|
846 |
+
output_hidden_states=output_hidden_states,
|
847 |
+
return_dict=return_dict,
|
848 |
+
)
|
849 |
+
|
850 |
+
hidden_states = transformer_outputs[0]
|
851 |
+
|
852 |
+
lm_logits = self.lm_head(hidden_states)
|
853 |
+
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
|
854 |
+
|
855 |
+
mc_loss = None
|
856 |
+
if mc_labels is not None:
|
857 |
+
loss_fct = CrossEntropyLoss()
|
858 |
+
mc_loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1))
|
859 |
+
lm_loss = None
|
860 |
+
if labels is not None:
|
861 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
862 |
+
shift_labels = labels[..., 1:].contiguous()
|
863 |
+
loss_fct = CrossEntropyLoss()
|
864 |
+
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
865 |
+
|
866 |
+
if not return_dict:
|
867 |
+
output = (lm_logits, mc_logits) + transformer_outputs[1:]
|
868 |
+
if mc_loss is not None:
|
869 |
+
output = (mc_loss,) + output
|
870 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
871 |
+
|
872 |
+
return GPT2DoubleHeadsModelOutput(
|
873 |
+
loss=lm_loss,
|
874 |
+
mc_loss=mc_loss,
|
875 |
+
logits=lm_logits,
|
876 |
+
mc_logits=mc_logits,
|
877 |
+
past_key_values=transformer_outputs.past_key_values,
|
878 |
+
hidden_states=transformer_outputs.hidden_states,
|
879 |
+
attentions=transformer_outputs.attentions,
|
880 |
+
)
|
881 |
+
|
882 |
+
|
883 |
+
class GPT2LForSequenceClassification(GPT2LPreTrainedModel):
|
884 |
+
authorized_missing_keys = [r"h\.\d+\.attn\.masked_bias", r"lm_head\.weight"]
|
885 |
+
|
886 |
+
def __init__(self, config):
|
887 |
+
super().__init__(config)
|
888 |
+
self.num_labels = config.num_labels
|
889 |
+
self.transformer = GPT2LModel(config)
|
890 |
+
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
|
891 |
+
|
892 |
+
self.init_weights()
|
893 |
+
def forward(
|
894 |
+
self,
|
895 |
+
input_ids=None,
|
896 |
+
past_key_values=None,
|
897 |
+
attention_mask=None,
|
898 |
+
token_type_ids=None,
|
899 |
+
position_ids=None,
|
900 |
+
head_mask=None,
|
901 |
+
inputs_embeds=None,
|
902 |
+
labels=None,
|
903 |
+
use_cache=None,
|
904 |
+
output_attentions=None,
|
905 |
+
output_hidden_states=None,
|
906 |
+
return_dict=None,
|
907 |
+
):
|
908 |
+
r"""
|
909 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
910 |
+
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
|
911 |
+
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
912 |
+
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
913 |
+
"""
|
914 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
915 |
+
|
916 |
+
transformer_outputs = self.transformer(
|
917 |
+
input_ids,
|
918 |
+
past_key_values=past_key_values,
|
919 |
+
attention_mask=attention_mask,
|
920 |
+
token_type_ids=token_type_ids,
|
921 |
+
position_ids=position_ids,
|
922 |
+
head_mask=head_mask,
|
923 |
+
inputs_embeds=inputs_embeds,
|
924 |
+
use_cache=use_cache,
|
925 |
+
output_attentions=output_attentions,
|
926 |
+
output_hidden_states=output_hidden_states,
|
927 |
+
return_dict=return_dict,
|
928 |
+
)
|
929 |
+
hidden_states = transformer_outputs[0]
|
930 |
+
logits = self.score(hidden_states)
|
931 |
+
|
932 |
+
if input_ids is not None:
|
933 |
+
batch_size, sequence_length = input_ids.shape[:2]
|
934 |
+
else:
|
935 |
+
batch_size, sequence_length = inputs_embeds.shape[:2]
|
936 |
+
|
937 |
+
assert (
|
938 |
+
self.config.pad_token_id is not None or batch_size == 1
|
939 |
+
), "Cannot handle batch sizes > 1 if no padding token is defined."
|
940 |
+
if self.config.pad_token_id is None:
|
941 |
+
sequence_lengths = -1
|
942 |
+
else:
|
943 |
+
if input_ids is not None:
|
944 |
+
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
|
945 |
+
else:
|
946 |
+
sequence_lengths = -1
|
947 |
+
logger.warning(
|
948 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
949 |
+
f"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
950 |
+
)
|
951 |
+
|
952 |
+
pooled_logits = logits[range(batch_size), sequence_lengths]
|
953 |
+
|
954 |
+
loss = None
|
955 |
+
if labels is not None:
|
956 |
+
if self.num_labels == 1:
|
957 |
+
# We are doing regression
|
958 |
+
loss_fct = MSELoss()
|
959 |
+
loss = loss_fct(pooled_logits.view(-1), labels.to(self.dtype).view(-1))
|
960 |
+
else:
|
961 |
+
loss_fct = CrossEntropyLoss()
|
962 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
963 |
+
|
964 |
+
if not return_dict:
|
965 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
966 |
+
return ((loss,) + output) if loss is not None else output
|
967 |
+
|
968 |
+
return SequenceClassifierOutputWithPast(
|
969 |
+
loss=loss,
|
970 |
+
logits=pooled_logits,
|
971 |
+
past_key_values=transformer_outputs.past_key_values,
|
972 |
+
hidden_states=transformer_outputs.hidden_states,
|
973 |
+
attentions=transformer_outputs.attentions,
|
974 |
+
)
|