File size: 2,454 Bytes
1f832ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5eb8326
 
 
 
1f832ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5b3a1b
f56d62d
274da61
9bc420a
ec12448
da75db2
a9b567d
2c8dc60
5eb8326
1f832ee
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
tags:
- generated_from_keras_callback
model-index:
- name: cruiser/twitter_roberta_final_model
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# cruiser/twitter_roberta_final_model

This model is a fine-tuned version of [cardiffnlp/twitter-xlm-roberta-base-sentiment](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0648
- Validation Loss: 1.0107
- Train Accuracy: 0.7943
- Epoch: 9

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 1e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 34090, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 250, 'power': 1.0, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 0.5482     | 0.4911          | 0.7991         | 0     |
| 0.4389     | 0.5053          | 0.7972         | 1     |
| 0.3567     | 0.5357          | 0.7935         | 2     |
| 0.2774     | 0.6193          | 0.7872         | 3     |
| 0.2080     | 0.6732          | 0.7989         | 4     |
| 0.1545     | 0.7639          | 0.7889         | 5     |
| 0.1162     | 0.8836          | 0.7855         | 6     |
| 0.0943     | 0.9301          | 0.7903         | 7     |
| 0.0768     | 0.9647          | 0.7929         | 8     |
| 0.0648     | 1.0107          | 0.7943         | 9     |


### Framework versions

- Transformers 4.27.4
- TensorFlow 2.11.0
- Datasets 2.1.0
- Tokenizers 0.13.2