Tom Aarsen commited on
Commit
2b12c2c
·
1 Parent(s): d3ca9c9

Revert inadvertent config, tokenizer updates

Browse files

This reverts commit d6a867ee21ea12c29559eca07bd3c048e0577565.

Files changed (2) hide show
  1. README.md +32 -32
  2. config.json +29 -37
README.md CHANGED
@@ -1,33 +1,33 @@
1
- ---
2
- license: apache-2.0
3
- datasets:
4
- - sentence-transformers/stsb
5
- language:
6
- - en
7
- base_model:
8
- - FacebookAI/roberta-large
9
- pipeline_tag: text-ranking
10
- library_name: sentence-transformers
11
- tags:
12
- - transformers
13
- ---
14
- # Cross-Encoder for Semantic Textual Similarity
15
- This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.
16
-
17
- ## Training Data
18
- This model was trained on the [STS benchmark dataset](http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark). The model will predict a score between 0 and 1 how for the semantic similarity of two sentences.
19
-
20
-
21
- ## Usage and Performance
22
-
23
- Pre-trained models can be used like this:
24
- ```python
25
- from sentence_transformers import CrossEncoder
26
-
27
- model = CrossEncoder('cross-encoder/stsb-roberta-large')
28
- scores = model.predict([('Sentence 1', 'Sentence 2'), ('Sentence 3', 'Sentence 4')])
29
- ```
30
-
31
- The model will predict scores for the pairs `('Sentence 1', 'Sentence 2')` and `('Sentence 3', 'Sentence 4')`.
32
-
33
  You can use this model also without sentence_transformers and by just using Transformers ``AutoModel`` class
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - sentence-transformers/stsb
5
+ language:
6
+ - en
7
+ base_model:
8
+ - FacebookAI/roberta-large
9
+ pipeline_tag: text-ranking
10
+ library_name: sentence-transformers
11
+ tags:
12
+ - transformers
13
+ ---
14
+ # Cross-Encoder for Semantic Textual Similarity
15
+ This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.
16
+
17
+ ## Training Data
18
+ This model was trained on the [STS benchmark dataset](http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark). The model will predict a score between 0 and 1 how for the semantic similarity of two sentences.
19
+
20
+
21
+ ## Usage and Performance
22
+
23
+ Pre-trained models can be used like this:
24
+ ```python
25
+ from sentence_transformers import CrossEncoder
26
+
27
+ model = CrossEncoder('cross-encoder/stsb-roberta-large')
28
+ scores = model.predict([('Sentence 1', 'Sentence 2'), ('Sentence 3', 'Sentence 4')])
29
+ ```
30
+
31
+ The model will predict scores for the pairs `('Sentence 1', 'Sentence 2')` and `('Sentence 3', 'Sentence 4')`.
32
+
33
  You can use this model also without sentence_transformers and by just using Transformers ``AutoModel`` class
config.json CHANGED
@@ -1,37 +1,29 @@
1
- {
2
- "_num_labels": 3,
3
- "architectures": [
4
- "RobertaForSequenceClassification"
5
- ],
6
- "attention_probs_dropout_prob": 0.1,
7
- "bos_token_id": 0,
8
- "classifier_dropout": null,
9
- "eos_token_id": 2,
10
- "gradient_checkpointing": false,
11
- "hidden_act": "gelu",
12
- "hidden_dropout_prob": 0.1,
13
- "hidden_size": 1024,
14
- "id2label": {
15
- "0": "LABEL_0"
16
- },
17
- "initializer_range": 0.02,
18
- "intermediate_size": 4096,
19
- "label2id": {
20
- "LABEL_0": 0
21
- },
22
- "layer_norm_eps": 1e-05,
23
- "max_position_embeddings": 514,
24
- "model_type": "roberta",
25
- "num_attention_heads": 16,
26
- "num_hidden_layers": 24,
27
- "pad_token_id": 1,
28
- "position_embedding_type": "absolute",
29
- "sentence_transformers": {
30
- "activation_fn": "torch.nn.modules.activation.Sigmoid",
31
- "version": "4.1.0.dev0"
32
- },
33
- "transformers_version": "4.52.0.dev0",
34
- "type_vocab_size": 1,
35
- "use_cache": true,
36
- "vocab_size": 50265
37
- }
 
1
+ {
2
+ "_num_labels": 3,
3
+ "architectures": [
4
+ "RobertaForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "id2label": {
14
+ "0": "LABEL_0"
15
+ },
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 4096,
18
+ "label2id": {
19
+ "LABEL_0": 0
20
+ },
21
+ "layer_norm_eps": 1e-05,
22
+ "max_position_embeddings": 514,
23
+ "model_type": "roberta",
24
+ "num_attention_heads": 16,
25
+ "num_hidden_layers": 24,
26
+ "pad_token_id": 1,
27
+ "type_vocab_size": 1,
28
+ "vocab_size": 50265
29
+ }