msmarco-MiniLM-L6-en-de-v1 / train_script.py
nreimers
upload
3a427b6
raw
history blame
9.17 kB
import gzip
import random
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig, AdamW
import sys
import torch
import transformers
from torch.utils.data import Dataset, DataLoader
from torch.cuda.amp import autocast
import tqdm
from datetime import datetime
from shutil import copyfile
import os
####################################
import gzip
from collections import defaultdict
import logging
import tqdm
import numpy as np
import sys
import pytrec_eval
from sentence_transformers import SentenceTransformer, util, CrossEncoder
import torch
model_name = sys.argv[1]
max_length = 350
######### Evaluation
queries_filepath = 'msmarco-data/trec2019/msmarco-test2019-queries.tsv.gz'
queries_eval = {}
with gzip.open(queries_filepath, 'rt', encoding='utf8') as fIn:
for line in fIn:
qid, query = line.strip().split("\t")[0:2]
queries_eval[qid] = query
rel = defaultdict(lambda: defaultdict(int))
with open('msmarco-data/trec2019/2019qrels-pass.txt') as fIn:
for line in fIn:
qid, _, pid, score = line.strip().split()
score = int(score)
if score > 0:
rel[qid][pid] = score
relevant_qid = []
for qid in queries_eval:
if len(rel[qid]) > 0:
relevant_qid.append(qid)
# Read top 1k
passage_cand = {}
with gzip.open('msmarco-data/trec2019/msmarco-passagetest2019-top1000.tsv.gz', 'rt', encoding='utf8') as fIn:
for line in fIn:
qid, pid, query, passage = line.strip().split("\t")
if qid not in passage_cand:
passage_cand[qid] = []
passage_cand[qid].append([pid, passage])
def eval_modal(model_path):
run = {}
model = CrossEncoder(model_path, max_length=512)
for qid in relevant_qid:
query = queries_eval[qid]
cand = passage_cand[qid]
pids = [c[0] for c in cand]
corpus_sentences = [c[1] for c in cand]
## CrossEncoder
cross_inp = [[query, sent] for sent in corpus_sentences]
if model.config.num_labels > 1:
cross_scores = model.predict(cross_inp, apply_softmax=True)[:, 1].tolist()
else:
cross_scores = model.predict(cross_inp, activation_fct=torch.nn.Identity()).tolist()
cross_scores_sparse = {}
for idx, pid in enumerate(pids):
cross_scores_sparse[pid] = cross_scores[idx]
sparse_scores = cross_scores_sparse
run[qid] = {}
for pid in sparse_scores:
run[qid][pid] = float(sparse_scores[pid])
evaluator = pytrec_eval.RelevanceEvaluator(rel, {'ndcg_cut.10'})
scores = evaluator.evaluate(run)
scores_mean = np.mean([ele["ndcg_cut_10"] for ele in scores.values()])
print("NDCG@10: {:.2f}".format(scores_mean * 100))
return scores_mean
################################
device = 'cuda' if torch.cuda.is_available() else 'cpu'
config = AutoConfig.from_pretrained(model_name)
config.num_labels = 1
model = AutoModelForSequenceClassification.from_pretrained(model_name, config=config)
tokenizer = AutoTokenizer.from_pretrained(model_name)
############# Remove layers
if len(sys.argv) > 2:
num_layers = int(sys.argv[2])
if num_layers == 6:
layers_to_keep = [0, 2, 4, 6, 8, 10] #6 Layers
elif num_layers == 4:
layers_to_keep = [1, 4, 7, 10] #4 Layers
elif num_layers == 2:
layers_to_keep = [3, 7] #2 Layers
else:
print("Unknown number of layers to keep:", num_layers)
exit()
print("Reduce model to {} layers".format(len(layers_to_keep)))
new_layers = torch.nn.ModuleList([layer_module for i, layer_module in enumerate(model.bert.encoder.layer) if i in layers_to_keep])
model.bert.encoder.layer = new_layers
model.bert.config.num_hidden_layers = len(layers_to_keep)
model_name += "_L-{}".format(len(layers_to_keep))
#######################
queries = {}
corpus = {}
output_save_path = 'output/train_cross-encoder_mse-{}-{}'.format(model_name.replace("/", "_"), datetime.now().strftime("%Y-%m-%d_%H-%M-%S"))
output_save_path_latest = output_save_path+"-latest"
tokenizer.save_pretrained(output_save_path)
tokenizer.save_pretrained(output_save_path_latest)
# Write self to path
train_script_path = os.path.join(output_save_path, 'train_script.py')
copyfile(__file__, train_script_path)
with open(train_script_path, 'a') as fOut:
fOut.write("\n\n# Script was called via:\n#python " + " ".join(sys.argv))
####
train_script_path = os.path.join(output_save_path_latest, 'train_script.py')
copyfile(__file__, train_script_path)
with open(train_script_path, 'a') as fOut:
fOut.write("\n\n# Script was called via:\n#python " + " ".join(sys.argv))
#### Read train files
class MultilingualDataset(Dataset):
def __init__(self):
self.examples = defaultdict(lambda: defaultdict(list)) #[id][lang] => [samples...]
def add(self, lang, filepath):
open_method = gzip.open if filepath.endswith('.gz') else open
with open_method(filepath, 'rt') as fIn:
for line in fIn:
pid, passage = line.strip().split("\t")
self.examples[pid][lang].append(passage)
def __len__(self):
return len(self.examples)
def __getitem__(self, item):
all_examples = self.examples[item] #All examples in all languages
lang_examples = random.choice(list(all_examples.values())) #Examples in on specific language
return random.choice(lang_examples) #One random example
train_corpus = MultilingualDataset()
train_corpus.add('en', 'msmarco-data/collection.tsv')
train_corpus.add('de', 'msmarco-data/de/collection.de.opus-mt.tsv.gz')
train_corpus.add('de', 'msmarco-data/de/collection.de.wmt19.tsv.gz')
train_queries = MultilingualDataset()
train_queries.add('en', 'msmarco-data/queries.train.tsv')
train_queries.add('de', 'msmarco-data/de/queries.train.de.opus-mt.tsv.gz')
train_queries.add('de', 'msmarco-data/de/queries.train.de.wmt19.tsv.gz')
############## MSE Dataset
class MSEDataset(Dataset):
def __init__(self, filepath):
super().__init__()
self.examples = []
with open(filepath) as fIn:
for line in fIn:
pos_score, neg_score, qid, pid1, pid2 = line.strip().split("\t")
self.examples.append([qid, pid1, pid2, float(pos_score)-float(neg_score)])
def __len__(self):
return len(self.examples)
def __getitem__(self, item):
return self.examples[item]
train_batch_size = 16
train_dataset = MSEDataset('msmarco-data/bert_cat_ensemble_msmarcopassage_train_scores_ids.tsv')
train_dataloader = DataLoader(train_dataset, drop_last=True, shuffle=True, batch_size=train_batch_size)
############## Optimizer
weight_decay = 0.01
max_grad_norm = 1
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': weight_decay},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=1e-5)
scheduler = transformers.get_linear_schedule_with_warmup(optimizer, num_warmup_steps=1000, num_training_steps=len(train_dataloader))
scaler = torch.cuda.amp.GradScaler()
loss_fct = torch.nn.MSELoss()
### Start training
model.to(device)
auto_save = 10000
best_ndcg_score = 0
for step_idx, batch in tqdm.tqdm(enumerate(train_dataloader), total=len(train_dataloader)):
batch_queries = [train_queries[qid] for qid in batch[0]]
batch_pos = [train_corpus[cid] for cid in batch[1]]
batch_neg = [train_corpus[cid] for cid in batch[2]]
scores = batch[3].float().to(device) #torch.tensor(batch[3], dtype=torch.float, device=device)
with autocast():
inp_pos = tokenizer(batch_queries, batch_pos, max_length=max_length, padding=True, truncation='longest_first', return_tensors='pt').to(device)
pred_pos = model(**inp_pos).logits.squeeze()
inp_neg = tokenizer(batch_queries, batch_neg, max_length=max_length, padding=True, truncation='longest_first', return_tensors='pt').to(device)
pred_neg = model(**inp_neg).logits.squeeze()
pred_diff = pred_pos - pred_neg
loss_value = loss_fct(pred_diff, scores)
scaler.scale(loss_value).backward()
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
scheduler.step()
if (step_idx+1) % auto_save == 0:
print("Step:", step_idx+1)
model.save_pretrained(output_save_path_latest)
ndcg_score = eval_modal(output_save_path_latest)
if ndcg_score >= best_ndcg_score:
best_ndcg_score = ndcg_score
print("Save to:", output_save_path)
model.save_pretrained(output_save_path)
model.save_pretrained(output_save_path)
# Script was called via:
#python train_cross-encoder_mse_multilingual.py microsoft/Multilingual-MiniLM-L12-H384 6