fix with actual model name (#4)
Browse files- fix with actual model name (cb57fa9d84c4c389f7e121cece7c52af992e1787)
Co-authored-by: Venkatachalam Natchiappan <[email protected]>
README.md
CHANGED
@@ -14,8 +14,8 @@ The model can be used for Information Retrieval: Given a query, encode the query
|
|
14 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
15 |
import torch
|
16 |
|
17 |
-
model = AutoModelForSequenceClassification.from_pretrained('
|
18 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
19 |
|
20 |
features = tokenizer(['How many people live in Berlin?', 'How many people live in Berlin?'], ['Berlin has a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.', 'New York City is famous for the Metropolitan Museum of Art.'], padding=True, truncation=True, return_tensors="pt")
|
21 |
|
@@ -31,7 +31,7 @@ with torch.no_grad():
|
|
31 |
The usage becomes easier when you have [SentenceTransformers](https://www.sbert.net/) installed. Then, you can use the pre-trained models like this:
|
32 |
```python
|
33 |
from sentence_transformers import CrossEncoder
|
34 |
-
model = CrossEncoder('
|
35 |
scores = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')])
|
36 |
```
|
37 |
|
|
|
14 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
15 |
import torch
|
16 |
|
17 |
+
model = AutoModelForSequenceClassification.from_pretrained('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
19 |
|
20 |
features = tokenizer(['How many people live in Berlin?', 'How many people live in Berlin?'], ['Berlin has a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.', 'New York City is famous for the Metropolitan Museum of Art.'], padding=True, truncation=True, return_tensors="pt")
|
21 |
|
|
|
31 |
The usage becomes easier when you have [SentenceTransformers](https://www.sbert.net/) installed. Then, you can use the pre-trained models like this:
|
32 |
```python
|
33 |
from sentence_transformers import CrossEncoder
|
34 |
+
model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', max_length=512)
|
35 |
scores = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')])
|
36 |
```
|
37 |
|