nreimers commited on
Commit
5ada194
·
1 Parent(s): 6efbd6a
README.md ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Cross-Encoder for MS Marco
2
+
3
+ This model was trained on the [MS Marco Passage Ranking](https://github.com/microsoft/MSMARCO-Passage-Ranking) task.
4
+
5
+ The model can be used for Information Retrieval: Given a query, encode the query will all possible passages (e.g. retrieved with ElasticSearch). Then sort the passages in a decreasing order. See [SBERT.net Retrieve & Re-rank](https://www.sbert.net/examples/applications/retrieve_rerank/README.html) for more details. The training code is available here: [SBERT.net Training MS Marco](https://github.com/UKPLab/sentence-transformers/tree/master/examples/training/ms_marco)
6
+
7
+
8
+ ## Usage with Transformers
9
+
10
+ ```python
11
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
12
+ import torch
13
+
14
+ model = AutoModelForSequenceClassification.from_pretrained('model_name')
15
+ tokenizer = AutoTokenizer.from_pretrained('model_name')
16
+
17
+ features = tokenizer(['How many people live in Berlin?', 'How many people live in Berlin?'], ['Berlin has a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.', 'New York City is famous for the Metropolitan Museum of Art.'], padding=True, truncation=True, return_tensors="pt")
18
+
19
+ model.eval()
20
+ with torch.no_grad():
21
+ scores = model(**features).logits
22
+ print(scores)
23
+ ```
24
+
25
+
26
+ ## Usage with SentenceTransformers
27
+
28
+ The usage becomes easier when you have [SentenceTransformers](https://www.sbert.net/) installed. Then, you can use the pre-trained models like this:
29
+ ```python
30
+ from sentence_transformers import CrossEncoder
31
+ model = CrossEncoder('model_name', max_length=512)
32
+ scores = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')])
33
+ ```
34
+
35
+
36
+ ## Performance
37
+ In the following table, we provide various pre-trained Cross-Encoders together with their performance on the [TREC Deep Learning 2019](https://microsoft.github.io/TREC-2019-Deep-Learning/) and the [MS Marco Passage Reranking](https://github.com/microsoft/MSMARCO-Passage-Ranking/) dataset.
38
+
39
+
40
+ | Model-Name | NDCG@10 (TREC DL 19) | MRR@10 (MS Marco Dev) | Docs / Sec |
41
+ | ------------- |:-------------| -----| --- |
42
+ | **Version 2 models** | | |
43
+ | cross-encoder/ms-marco-TinyBERT-L-2-v2 | 69.84 | 32.56 | 9000
44
+ | cross-encoder/ms-marco-MiniLM-L-2-v2 | 71.01 | 34.85 | 4100
45
+ | cross-encoder/ms-marco-MiniLM-L-4-v2 | 73.04 | 37.70 | 2500
46
+ | cross-encoder/ms-marco-MiniLM-L-6-v2 | 74.30 | 39.01 | 1800
47
+ | cross-encoder/ms-marco-MiniLM-L-12-v2 | 74.31 | 39.02 | 960
48
+ | **Version 1 models** | | |
49
+ | cross-encoder/ms-marco-TinyBERT-L-2 | 67.43 | 30.15 | 9000
50
+ | cross-encoder/ms-marco-TinyBERT-L-4 | 68.09 | 34.50 | 2900
51
+ | cross-encoder/ms-marco-TinyBERT-L-6 | 69.57 | 36.13 | 680
52
+ | cross-encoder/ms-marco-electra-base | 71.99 | 36.41 | 340
53
+ | **Other models** | | |
54
+ | nboost/pt-tinybert-msmarco | 63.63 | 28.80 | 2900
55
+ | nboost/pt-bert-base-uncased-msmarco | 70.94 | 34.75 | 340
56
+ | nboost/pt-bert-large-msmarco | 73.36 | 36.48 | 100
57
+ | Capreolus/electra-base-msmarco | 71.23 | 36.89 | 340
58
+ | amberoad/bert-multilingual-passage-reranking-msmarco | 68.40 | 35.54 | 330
59
+ | sebastian-hofstaetter/distilbert-cat-margin_mse-T2-msmarco | 72.82 | 37.88 | 720
60
+
61
+ Note: Runtime was computed on a V100 GPU.
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "cross-encoder/ms-marco-MiniLM-L-12-v2",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 6,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "transformers_version": "4.4.2",
27
+ "type_vocab_size": 2,
28
+ "use_cache": true,
29
+ "vocab_size": 30522,
30
+ "sbert_ce_default_activation_function": "torch.nn.modules.linear.Identity"
31
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ae17b87eda3d184502a821fddff43d82feb7c206f665a851c491ec715b497ed
3
+ size 90903017
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "special_tokens_map_file": "/home/ukp-reimers/.cache/huggingface/transformers/1e5909e4dfaa904617797ed35a6105a23daa56cbefca48fef329f772584699fb.dd8bd9bfd3664b530ea4e645105f557769387b3da9f79bdb55ed556bdd80611d", "name_or_path": "../output-cat/microsoft_MiniLM-L12-H384-uncased-2021-04-03_22-57-29", "do_basic_tokenize": true, "never_split": null}
vocab.txt ADDED
The diff for this file is too large to render. See raw diff