Upload model
Browse files- README.md +199 -0
- config.json +15 -0
- configuration_basnet.py +18 -0
- model.safetensors +3 -0
- modeling_basnet.py +481 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BASNetModel"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_basnet.BASNetConfig",
|
7 |
+
"AutoModel": "modeling_basnet.BASNetModel"
|
8 |
+
},
|
9 |
+
"kernel_size": 3,
|
10 |
+
"model_type": "basnet",
|
11 |
+
"n_channels": 3,
|
12 |
+
"resnet_model": "microsoft/resnet-34",
|
13 |
+
"torch_dtype": "float32",
|
14 |
+
"transformers_version": "4.42.4"
|
15 |
+
}
|
configuration_basnet.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.configuration_utils import PretrainedConfig
|
2 |
+
|
3 |
+
|
4 |
+
class BASNetConfig(PretrainedConfig):
|
5 |
+
model_type = "basnet"
|
6 |
+
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
resnet_model: str = "microsoft/resnet-34",
|
10 |
+
n_channels: int = 3,
|
11 |
+
kernel_size: int = 3,
|
12 |
+
**kwargs,
|
13 |
+
) -> None:
|
14 |
+
super().__init__(**kwargs)
|
15 |
+
self.resnet_model = resnet_model
|
16 |
+
self.n_channels = n_channels
|
17 |
+
|
18 |
+
self.kernel_size = 3
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83db9a738691a9eca622ec38fac24b31e5b47121bec65570a3cf83f0f00ede32
|
3 |
+
size 348466168
|
modeling_basnet.py
ADDED
@@ -0,0 +1,481 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from typing import Optional, Tuple
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torchvision
|
7 |
+
from transformers.modeling_utils import PreTrainedModel
|
8 |
+
|
9 |
+
from .configuration_basnet import BASNetConfig
|
10 |
+
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
|
13 |
+
|
14 |
+
class RefUnet(nn.Module):
|
15 |
+
def __init__(self, in_ch: int, inc_ch: int) -> None:
|
16 |
+
super().__init__()
|
17 |
+
|
18 |
+
self.conv0 = nn.Conv2d(in_ch, inc_ch, kernel_size=3, padding=1)
|
19 |
+
|
20 |
+
self.conv1 = nn.Conv2d(inc_ch, 64, kernel_size=3, padding=1)
|
21 |
+
self.bn1 = nn.BatchNorm2d(64)
|
22 |
+
self.relu1 = nn.ReLU(inplace=True)
|
23 |
+
|
24 |
+
self.pool1 = nn.MaxPool2d(2, 2, ceil_mode=True)
|
25 |
+
|
26 |
+
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
|
27 |
+
self.bn2 = nn.BatchNorm2d(64)
|
28 |
+
self.relu2 = nn.ReLU(inplace=True)
|
29 |
+
|
30 |
+
self.pool2 = nn.MaxPool2d(2, 2, ceil_mode=True)
|
31 |
+
|
32 |
+
self.conv3 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
|
33 |
+
self.bn3 = nn.BatchNorm2d(64)
|
34 |
+
self.relu3 = nn.ReLU(inplace=True)
|
35 |
+
|
36 |
+
self.pool3 = nn.MaxPool2d(2, 2, ceil_mode=True)
|
37 |
+
|
38 |
+
self.conv4 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
|
39 |
+
self.bn4 = nn.BatchNorm2d(64)
|
40 |
+
self.relu4 = nn.ReLU(inplace=True)
|
41 |
+
|
42 |
+
self.pool4 = nn.MaxPool2d(2, 2, ceil_mode=True)
|
43 |
+
|
44 |
+
#####
|
45 |
+
|
46 |
+
self.conv5 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
|
47 |
+
self.bn5 = nn.BatchNorm2d(64)
|
48 |
+
self.relu5 = nn.ReLU(inplace=True)
|
49 |
+
|
50 |
+
#####
|
51 |
+
|
52 |
+
self.conv_d4 = nn.Conv2d(128, 64, kernel_size=3, padding=1)
|
53 |
+
self.bn_d4 = nn.BatchNorm2d(64)
|
54 |
+
self.relu_d4 = nn.ReLU(inplace=True)
|
55 |
+
|
56 |
+
self.conv_d3 = nn.Conv2d(128, 64, kernel_size=3, padding=1)
|
57 |
+
self.bn_d3 = nn.BatchNorm2d(64)
|
58 |
+
self.relu_d3 = nn.ReLU(inplace=True)
|
59 |
+
|
60 |
+
self.conv_d2 = nn.Conv2d(128, 64, kernel_size=3, padding=1)
|
61 |
+
self.bn_d2 = nn.BatchNorm2d(64)
|
62 |
+
self.relu_d2 = nn.ReLU(inplace=True)
|
63 |
+
|
64 |
+
self.conv_d1 = nn.Conv2d(128, 64, kernel_size=3, padding=1)
|
65 |
+
self.bn_d1 = nn.BatchNorm2d(64)
|
66 |
+
self.relu_d1 = nn.ReLU(inplace=True)
|
67 |
+
|
68 |
+
self.conv_d0 = nn.Conv2d(64, 1, kernel_size=3, padding=1)
|
69 |
+
|
70 |
+
self.upscore2 = nn.Upsample(
|
71 |
+
scale_factor=2, mode="bilinear", align_corners=False
|
72 |
+
)
|
73 |
+
# self.upscore2 = nn.Upsample(scale_factor=2, mode='bilinear')
|
74 |
+
|
75 |
+
def forward(self, x):
|
76 |
+
hx = x
|
77 |
+
hx = self.conv0(hx)
|
78 |
+
|
79 |
+
hx1 = self.relu1(self.bn1(self.conv1(hx)))
|
80 |
+
hx = self.pool1(hx1)
|
81 |
+
|
82 |
+
hx2 = self.relu2(self.bn2(self.conv2(hx)))
|
83 |
+
hx = self.pool2(hx2)
|
84 |
+
|
85 |
+
hx3 = self.relu3(self.bn3(self.conv3(hx)))
|
86 |
+
hx = self.pool3(hx3)
|
87 |
+
|
88 |
+
hx4 = self.relu4(self.bn4(self.conv4(hx)))
|
89 |
+
hx = self.pool4(hx4)
|
90 |
+
|
91 |
+
hx5 = self.relu5(self.bn5(self.conv5(hx)))
|
92 |
+
|
93 |
+
hx = self.upscore2(hx5)
|
94 |
+
|
95 |
+
d4 = self.relu_d4(self.bn_d4(self.conv_d4(torch.cat((hx, hx4), 1))))
|
96 |
+
hx = self.upscore2(d4)
|
97 |
+
|
98 |
+
d3 = self.relu_d3(self.bn_d3(self.conv_d3(torch.cat((hx, hx3), 1))))
|
99 |
+
hx = self.upscore2(d3)
|
100 |
+
|
101 |
+
d2 = self.relu_d2(self.bn_d2(self.conv_d2(torch.cat((hx, hx2), 1))))
|
102 |
+
hx = self.upscore2(d2)
|
103 |
+
|
104 |
+
d1 = self.relu_d1(self.bn_d1(self.conv_d1(torch.cat((hx, hx1), 1))))
|
105 |
+
|
106 |
+
residual = self.conv_d0(d1)
|
107 |
+
|
108 |
+
return x + residual
|
109 |
+
|
110 |
+
|
111 |
+
def conv3x3(in_planes, out_planes, stride=1) -> nn.Conv2d:
|
112 |
+
"3x3 convolution with padding"
|
113 |
+
return nn.Conv2d(
|
114 |
+
in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False
|
115 |
+
)
|
116 |
+
|
117 |
+
|
118 |
+
class BasicBlock(nn.Module):
|
119 |
+
expansion: int = 1
|
120 |
+
|
121 |
+
def __init__(self, inplanes: int, planes: int, stride: int = 1, downsample=None):
|
122 |
+
super(BasicBlock, self).__init__()
|
123 |
+
self.conv1 = conv3x3(inplanes, planes, stride)
|
124 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
125 |
+
self.relu = nn.ReLU(inplace=True)
|
126 |
+
self.conv2 = conv3x3(planes, planes)
|
127 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
128 |
+
self.downsample = downsample
|
129 |
+
self.stride = stride
|
130 |
+
|
131 |
+
def forward(self, x):
|
132 |
+
residual = x
|
133 |
+
|
134 |
+
out = self.conv1(x)
|
135 |
+
out = self.bn1(out)
|
136 |
+
out = self.relu(out)
|
137 |
+
|
138 |
+
out = self.conv2(out)
|
139 |
+
out = self.bn2(out)
|
140 |
+
|
141 |
+
if self.downsample is not None:
|
142 |
+
residual = self.downsample(x)
|
143 |
+
|
144 |
+
out += residual
|
145 |
+
out = self.relu(out)
|
146 |
+
|
147 |
+
return out
|
148 |
+
|
149 |
+
|
150 |
+
class BASNetModel(PreTrainedModel):
|
151 |
+
def __init__(self, config: BASNetConfig) -> None:
|
152 |
+
super().__init__(config)
|
153 |
+
|
154 |
+
resnet = torchvision.models.resnet34(
|
155 |
+
weights=torchvision.models.ResNet34_Weights.IMAGENET1K_V1
|
156 |
+
)
|
157 |
+
|
158 |
+
## -------------Encoder--------------
|
159 |
+
|
160 |
+
self.inconv = nn.Conv2d(
|
161 |
+
config.n_channels, 64, kernel_size=config.kernel_size, padding=1
|
162 |
+
)
|
163 |
+
self.inbn = nn.BatchNorm2d(64)
|
164 |
+
self.inrelu = nn.ReLU(inplace=True)
|
165 |
+
|
166 |
+
# stage 1
|
167 |
+
self.encoder1 = resnet.layer1 # 256
|
168 |
+
# stage 2
|
169 |
+
self.encoder2 = resnet.layer2 # 128
|
170 |
+
# stage 3
|
171 |
+
self.encoder3 = resnet.layer3 # 64
|
172 |
+
# stage 4
|
173 |
+
self.encoder4 = resnet.layer4 # 32
|
174 |
+
|
175 |
+
self.pool4 = nn.MaxPool2d(2, 2, ceil_mode=True)
|
176 |
+
|
177 |
+
# stage 5
|
178 |
+
self.resb5_1 = BasicBlock(512, 512)
|
179 |
+
self.resb5_2 = BasicBlock(512, 512)
|
180 |
+
self.resb5_3 = BasicBlock(512, 512) # 16
|
181 |
+
|
182 |
+
self.pool5 = nn.MaxPool2d(2, 2, ceil_mode=True)
|
183 |
+
|
184 |
+
# stage 6
|
185 |
+
self.resb6_1 = BasicBlock(512, 512)
|
186 |
+
self.resb6_2 = BasicBlock(512, 512)
|
187 |
+
self.resb6_3 = BasicBlock(512, 512) # 8
|
188 |
+
|
189 |
+
## -------------Bridge--------------
|
190 |
+
|
191 |
+
# stage Bridge
|
192 |
+
self.convbg_1 = nn.Conv2d(
|
193 |
+
512, 512, kernel_size=config.kernel_size, dilation=2, padding=2
|
194 |
+
) # 8
|
195 |
+
self.bnbg_1 = nn.BatchNorm2d(512)
|
196 |
+
self.relubg_1 = nn.ReLU(inplace=True)
|
197 |
+
self.convbg_m = nn.Conv2d(
|
198 |
+
512, 512, kernel_size=config.kernel_size, dilation=2, padding=2
|
199 |
+
)
|
200 |
+
self.bnbg_m = nn.BatchNorm2d(512)
|
201 |
+
self.relubg_m = nn.ReLU(inplace=True)
|
202 |
+
self.convbg_2 = nn.Conv2d(
|
203 |
+
512, 512, kernel_size=config.kernel_size, dilation=2, padding=2
|
204 |
+
)
|
205 |
+
self.bnbg_2 = nn.BatchNorm2d(512)
|
206 |
+
self.relubg_2 = nn.ReLU(inplace=True)
|
207 |
+
|
208 |
+
## -------------Decoder--------------
|
209 |
+
|
210 |
+
# stage 6d
|
211 |
+
self.conv6d_1 = nn.Conv2d(
|
212 |
+
1024, 512, kernel_size=config.kernel_size, padding=1
|
213 |
+
) # 16
|
214 |
+
self.bn6d_1 = nn.BatchNorm2d(512)
|
215 |
+
self.relu6d_1 = nn.ReLU(inplace=True)
|
216 |
+
|
217 |
+
self.conv6d_m = nn.Conv2d(
|
218 |
+
512, 512, kernel_size=config.kernel_size, dilation=2, padding=2
|
219 |
+
) ###
|
220 |
+
self.bn6d_m = nn.BatchNorm2d(512)
|
221 |
+
self.relu6d_m = nn.ReLU(inplace=True)
|
222 |
+
|
223 |
+
self.conv6d_2 = nn.Conv2d(
|
224 |
+
512, 512, kernel_size=config.kernel_size, dilation=2, padding=2
|
225 |
+
)
|
226 |
+
self.bn6d_2 = nn.BatchNorm2d(512)
|
227 |
+
self.relu6d_2 = nn.ReLU(inplace=True)
|
228 |
+
|
229 |
+
# stage 5d
|
230 |
+
self.conv5d_1 = nn.Conv2d(
|
231 |
+
1024, 512, kernel_size=config.kernel_size, padding=1
|
232 |
+
) # 16
|
233 |
+
self.bn5d_1 = nn.BatchNorm2d(512)
|
234 |
+
self.relu5d_1 = nn.ReLU(inplace=True)
|
235 |
+
|
236 |
+
self.conv5d_m = nn.Conv2d(
|
237 |
+
512, 512, kernel_size=config.kernel_size, padding=1
|
238 |
+
) ###
|
239 |
+
self.bn5d_m = nn.BatchNorm2d(512)
|
240 |
+
self.relu5d_m = nn.ReLU(inplace=True)
|
241 |
+
|
242 |
+
self.conv5d_2 = nn.Conv2d(512, 512, kernel_size=config.kernel_size, padding=1)
|
243 |
+
self.bn5d_2 = nn.BatchNorm2d(512)
|
244 |
+
self.relu5d_2 = nn.ReLU(inplace=True)
|
245 |
+
|
246 |
+
# stage 4d
|
247 |
+
self.conv4d_1 = nn.Conv2d(
|
248 |
+
1024, 512, kernel_size=config.kernel_size, padding=1
|
249 |
+
) # 32
|
250 |
+
self.bn4d_1 = nn.BatchNorm2d(512)
|
251 |
+
self.relu4d_1 = nn.ReLU(inplace=True)
|
252 |
+
|
253 |
+
self.conv4d_m = nn.Conv2d(
|
254 |
+
512, 512, kernel_size=config.kernel_size, padding=1
|
255 |
+
) ###
|
256 |
+
self.bn4d_m = nn.BatchNorm2d(512)
|
257 |
+
self.relu4d_m = nn.ReLU(inplace=True)
|
258 |
+
|
259 |
+
self.conv4d_2 = nn.Conv2d(512, 256, kernel_size=config.kernel_size, padding=1)
|
260 |
+
self.bn4d_2 = nn.BatchNorm2d(256)
|
261 |
+
self.relu4d_2 = nn.ReLU(inplace=True)
|
262 |
+
|
263 |
+
# stage 3d
|
264 |
+
self.conv3d_1 = nn.Conv2d(
|
265 |
+
512, 256, kernel_size=config.kernel_size, padding=1
|
266 |
+
) # 64
|
267 |
+
self.bn3d_1 = nn.BatchNorm2d(256)
|
268 |
+
self.relu3d_1 = nn.ReLU(inplace=True)
|
269 |
+
|
270 |
+
self.conv3d_m = nn.Conv2d(
|
271 |
+
256, 256, kernel_size=config.kernel_size, padding=1
|
272 |
+
) ###
|
273 |
+
self.bn3d_m = nn.BatchNorm2d(256)
|
274 |
+
self.relu3d_m = nn.ReLU(inplace=True)
|
275 |
+
|
276 |
+
self.conv3d_2 = nn.Conv2d(256, 128, kernel_size=config.kernel_size, padding=1)
|
277 |
+
self.bn3d_2 = nn.BatchNorm2d(128)
|
278 |
+
self.relu3d_2 = nn.ReLU(inplace=True)
|
279 |
+
|
280 |
+
# stage 2d
|
281 |
+
|
282 |
+
self.conv2d_1 = nn.Conv2d(
|
283 |
+
256, 128, kernel_size=config.kernel_size, padding=1
|
284 |
+
) # 128
|
285 |
+
self.bn2d_1 = nn.BatchNorm2d(128)
|
286 |
+
self.relu2d_1 = nn.ReLU(inplace=True)
|
287 |
+
|
288 |
+
self.conv2d_m = nn.Conv2d(
|
289 |
+
128, 128, kernel_size=config.kernel_size, padding=1
|
290 |
+
) ###
|
291 |
+
self.bn2d_m = nn.BatchNorm2d(128)
|
292 |
+
self.relu2d_m = nn.ReLU(inplace=True)
|
293 |
+
|
294 |
+
self.conv2d_2 = nn.Conv2d(128, 64, kernel_size=config.kernel_size, padding=1)
|
295 |
+
self.bn2d_2 = nn.BatchNorm2d(64)
|
296 |
+
self.relu2d_2 = nn.ReLU(inplace=True)
|
297 |
+
|
298 |
+
# stage 1d
|
299 |
+
self.conv1d_1 = nn.Conv2d(
|
300 |
+
128, 64, kernel_size=config.kernel_size, padding=1
|
301 |
+
) # 256
|
302 |
+
self.bn1d_1 = nn.BatchNorm2d(64)
|
303 |
+
self.relu1d_1 = nn.ReLU(inplace=True)
|
304 |
+
|
305 |
+
self.conv1d_m = nn.Conv2d(
|
306 |
+
64, 64, kernel_size=config.kernel_size, padding=1
|
307 |
+
) ###
|
308 |
+
self.bn1d_m = nn.BatchNorm2d(64)
|
309 |
+
self.relu1d_m = nn.ReLU(inplace=True)
|
310 |
+
|
311 |
+
self.conv1d_2 = nn.Conv2d(64, 64, kernel_size=config.kernel_size, padding=1)
|
312 |
+
self.bn1d_2 = nn.BatchNorm2d(64)
|
313 |
+
self.relu1d_2 = nn.ReLU(inplace=True)
|
314 |
+
|
315 |
+
## -------------Bilinear Upsampling--------------
|
316 |
+
self.upscore6 = nn.Upsample(
|
317 |
+
scale_factor=32, mode="bilinear", align_corners=False
|
318 |
+
) ###
|
319 |
+
self.upscore5 = nn.Upsample(
|
320 |
+
scale_factor=16, mode="bilinear", align_corners=False
|
321 |
+
)
|
322 |
+
self.upscore4 = nn.Upsample(
|
323 |
+
scale_factor=8, mode="bilinear", align_corners=False
|
324 |
+
)
|
325 |
+
self.upscore3 = nn.Upsample(
|
326 |
+
scale_factor=4, mode="bilinear", align_corners=False
|
327 |
+
)
|
328 |
+
self.upscore2 = nn.Upsample(
|
329 |
+
scale_factor=2, mode="bilinear", align_corners=False
|
330 |
+
)
|
331 |
+
|
332 |
+
# self.upscore6 = nn.Upsample(scale_factor=32, mode='bilinear') ###
|
333 |
+
# self.upscore5 = nn.Upsample(scale_factor=16, mode='bilinear')
|
334 |
+
# self.upscore4 = nn.Upsample(scale_factor=8, mode='bilinear')
|
335 |
+
# self.upscore3 = nn.Upsample(scale_factor=4, mode='bilinear')
|
336 |
+
# self.upscore2 = nn.Upsample(scale_factor=2, mode='bilinear')
|
337 |
+
|
338 |
+
## -------------Side Output--------------
|
339 |
+
self.outconvb = nn.Conv2d(512, 1, kernel_size=3, padding=1)
|
340 |
+
self.outconv6 = nn.Conv2d(512, 1, kernel_size=3, padding=1)
|
341 |
+
self.outconv5 = nn.Conv2d(512, 1, kernel_size=3, padding=1)
|
342 |
+
self.outconv4 = nn.Conv2d(256, 1, kernel_size=3, padding=1)
|
343 |
+
self.outconv3 = nn.Conv2d(128, 1, kernel_size=3, padding=1)
|
344 |
+
self.outconv2 = nn.Conv2d(64, 1, kernel_size=3, padding=1)
|
345 |
+
self.outconv1 = nn.Conv2d(64, 1, kernel_size=3, padding=1)
|
346 |
+
|
347 |
+
## -------------Refine Module-------------
|
348 |
+
self.refunet = RefUnet(1, 64)
|
349 |
+
|
350 |
+
self.post_init()
|
351 |
+
|
352 |
+
def forward(
|
353 |
+
self, pixel_values: torch.Tensor
|
354 |
+
) -> Tuple[
|
355 |
+
torch.Tensor,
|
356 |
+
torch.Tensor,
|
357 |
+
torch.Tensor,
|
358 |
+
torch.Tensor,
|
359 |
+
torch.Tensor,
|
360 |
+
torch.Tensor,
|
361 |
+
torch.Tensor,
|
362 |
+
torch.Tensor,
|
363 |
+
]:
|
364 |
+
hx = pixel_values
|
365 |
+
|
366 |
+
## -------------Encoder-------------
|
367 |
+
hx = self.inconv(hx)
|
368 |
+
hx = self.inbn(hx)
|
369 |
+
hx = self.inrelu(hx)
|
370 |
+
|
371 |
+
h1 = self.encoder1(hx) # 256
|
372 |
+
h2 = self.encoder2(h1) # 128
|
373 |
+
h3 = self.encoder3(h2) # 64
|
374 |
+
h4 = self.encoder4(h3) # 32
|
375 |
+
|
376 |
+
hx = self.pool4(h4) # 16
|
377 |
+
|
378 |
+
hx = self.resb5_1(hx)
|
379 |
+
hx = self.resb5_2(hx)
|
380 |
+
h5 = self.resb5_3(hx)
|
381 |
+
|
382 |
+
hx = self.pool5(h5) # 8
|
383 |
+
|
384 |
+
hx = self.resb6_1(hx)
|
385 |
+
hx = self.resb6_2(hx)
|
386 |
+
h6 = self.resb6_3(hx)
|
387 |
+
|
388 |
+
## -------------Bridge-------------
|
389 |
+
hx = self.relubg_1(self.bnbg_1(self.convbg_1(h6))) # 8
|
390 |
+
hx = self.relubg_m(self.bnbg_m(self.convbg_m(hx)))
|
391 |
+
hbg = self.relubg_2(self.bnbg_2(self.convbg_2(hx)))
|
392 |
+
|
393 |
+
## -------------Decoder-------------
|
394 |
+
|
395 |
+
hx = self.relu6d_1(self.bn6d_1(self.conv6d_1(torch.cat((hbg, h6), 1))))
|
396 |
+
hx = self.relu6d_m(self.bn6d_m(self.conv6d_m(hx)))
|
397 |
+
hd6 = self.relu6d_2(self.bn5d_2(self.conv6d_2(hx)))
|
398 |
+
|
399 |
+
hx = self.upscore2(hd6) # 8 -> 16
|
400 |
+
|
401 |
+
hx = self.relu5d_1(self.bn5d_1(self.conv5d_1(torch.cat((hx, h5), 1))))
|
402 |
+
hx = self.relu5d_m(self.bn5d_m(self.conv5d_m(hx)))
|
403 |
+
hd5 = self.relu5d_2(self.bn5d_2(self.conv5d_2(hx)))
|
404 |
+
|
405 |
+
hx = self.upscore2(hd5) # 16 -> 32
|
406 |
+
|
407 |
+
hx = self.relu4d_1(self.bn4d_1(self.conv4d_1(torch.cat((hx, h4), 1))))
|
408 |
+
hx = self.relu4d_m(self.bn4d_m(self.conv4d_m(hx)))
|
409 |
+
hd4 = self.relu4d_2(self.bn4d_2(self.conv4d_2(hx)))
|
410 |
+
|
411 |
+
hx = self.upscore2(hd4) # 32 -> 64
|
412 |
+
|
413 |
+
hx = self.relu3d_1(self.bn3d_1(self.conv3d_1(torch.cat((hx, h3), 1))))
|
414 |
+
hx = self.relu3d_m(self.bn3d_m(self.conv3d_m(hx)))
|
415 |
+
hd3 = self.relu3d_2(self.bn3d_2(self.conv3d_2(hx)))
|
416 |
+
|
417 |
+
hx = self.upscore2(hd3) # 64 -> 128
|
418 |
+
|
419 |
+
hx = self.relu2d_1(self.bn2d_1(self.conv2d_1(torch.cat((hx, h2), 1))))
|
420 |
+
hx = self.relu2d_m(self.bn2d_m(self.conv2d_m(hx)))
|
421 |
+
hd2 = self.relu2d_2(self.bn2d_2(self.conv2d_2(hx)))
|
422 |
+
|
423 |
+
hx = self.upscore2(hd2) # 128 -> 256
|
424 |
+
|
425 |
+
hx = self.relu1d_1(self.bn1d_1(self.conv1d_1(torch.cat((hx, h1), 1))))
|
426 |
+
hx = self.relu1d_m(self.bn1d_m(self.conv1d_m(hx)))
|
427 |
+
hd1 = self.relu1d_2(self.bn1d_2(self.conv1d_2(hx)))
|
428 |
+
|
429 |
+
## -------------Side Output-------------
|
430 |
+
db = self.outconvb(hbg)
|
431 |
+
db = self.upscore6(db) # 8->256
|
432 |
+
|
433 |
+
d6 = self.outconv6(hd6)
|
434 |
+
d6 = self.upscore6(d6) # 8->256
|
435 |
+
|
436 |
+
d5 = self.outconv5(hd5)
|
437 |
+
d5 = self.upscore5(d5) # 16->256
|
438 |
+
|
439 |
+
d4 = self.outconv4(hd4)
|
440 |
+
d4 = self.upscore4(d4) # 32->256
|
441 |
+
|
442 |
+
d3 = self.outconv3(hd3)
|
443 |
+
d3 = self.upscore3(d3) # 64->256
|
444 |
+
|
445 |
+
d2 = self.outconv2(hd2)
|
446 |
+
d2 = self.upscore2(d2) # 128->256
|
447 |
+
|
448 |
+
d1 = self.outconv1(hd1) # 256
|
449 |
+
|
450 |
+
## -------------Refine Module-------------
|
451 |
+
dout = self.refunet(d1) # 256
|
452 |
+
|
453 |
+
return (
|
454 |
+
torch.sigmoid(dout),
|
455 |
+
torch.sigmoid(d1),
|
456 |
+
torch.sigmoid(d2),
|
457 |
+
torch.sigmoid(d3),
|
458 |
+
torch.sigmoid(d4),
|
459 |
+
torch.sigmoid(d5),
|
460 |
+
torch.sigmoid(d6),
|
461 |
+
torch.sigmoid(db),
|
462 |
+
)
|
463 |
+
|
464 |
+
|
465 |
+
def convert_from_checkpoint(
|
466 |
+
repo_id: str, filename: str, config: Optional[BASNetConfig] = None
|
467 |
+
) -> BASNetModel:
|
468 |
+
from huggingface_hub import hf_hub_download
|
469 |
+
|
470 |
+
checkpoint_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
471 |
+
|
472 |
+
config = config or BASNetConfig()
|
473 |
+
model = BASNetModel(config)
|
474 |
+
|
475 |
+
logger.info(f"Loading checkpoint from {checkpoint_path}")
|
476 |
+
state_dict = torch.load(checkpoint_path)
|
477 |
+
|
478 |
+
model.load_state_dict(state_dict, strict=True)
|
479 |
+
model.eval()
|
480 |
+
|
481 |
+
return model
|