File size: 9,553 Bytes
70c20dc
 
 
 
 
 
 
 
9165302
70c20dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
from typing import Dict, Tuple, Union

import cv2
import numpy as np
import torch
from PIL import Image
from PIL.Image import Image as PilImage
from torchvision import transforms
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
from transformers.image_utils import ImageInput


class RescaleT(object):
    def __init__(self, output_size: Union[int, Tuple[int, int]]) -> None:
        super().__init__()
        assert isinstance(output_size, (int, tuple))
        self.output_size = output_size

    def __call__(self, sample) -> Dict[str, np.ndarray]:
        image, label = sample["image"], sample["label"]

        h, w = image.shape[:2]

        if isinstance(self.output_size, int):
            if h > w:
                new_h, new_w = self.output_size * h / w, self.output_size
            else:
                new_h, new_w = self.output_size, self.output_size * w / h
        else:
            new_h, new_w = self.output_size

        new_h, new_w = int(new_h), int(new_w)

        # resize the image to new_h x new_w and convert image from range [0,255] to [0,1]
        # img = transform.resize(image,(new_h,new_w),mode='constant')
        # lbl = transform.resize(label,(new_h,new_w),mode='constant', order=0, preserve_range=True)

        # img = transform.resize(image, (self.output_size, self.output_size), mode='constant')
        img = (
            cv2.resize(
                image,
                (self.output_size, self.output_size),
                interpolation=cv2.INTER_AREA,
            )
            / 255.0
        )
        # lbl = transform.resize(label, (self.output_size, self.output_size),
        #                        mode='constant',
        #                        order=0,
        #                        preserve_range=True)
        lbl = cv2.resize(
            label, (self.output_size, self.output_size), interpolation=cv2.INTER_NEAREST
        )
        lbl = np.expand_dims(lbl, axis=-1)
        lbl = np.clip(lbl, np.min(label), np.max(label))

        return {"image": img, "label": lbl}


class ToTensorLab(object):
    """Convert ndarrays in sample to Tensors."""

    def __init__(self, flag: int = 0) -> None:
        self.flag = flag

    def __call__(self, sample):
        image, label = sample["image"], sample["label"]

        tmpLbl = np.zeros(label.shape)

        if np.max(label) < 1e-6:
            label = label
        else:
            label = label / np.max(label)

        # change the color space
        if self.flag == 2:  # with rgb and Lab colors
            tmpImg = np.zeros((image.shape[0], image.shape[1], 6))
            tmpImgt = np.zeros((image.shape[0], image.shape[1], 3))
            if image.shape[2] == 1:
                tmpImgt[:, :, 0] = image[:, :, 0]
                tmpImgt[:, :, 1] = image[:, :, 0]
                tmpImgt[:, :, 2] = image[:, :, 0]
            else:
                tmpImgt = image
            # tmpImgtl = color.rgb2lab(tmpImgt)
            tmpImgtl = cv2.cvtColor(tmpImgt, cv2.COLOR_RGB2LAB)

            # nomalize image to range [0,1]
            tmpImg[:, :, 0] = (tmpImgt[:, :, 0] - np.min(tmpImgt[:, :, 0])) / (
                np.max(tmpImgt[:, :, 0]) - np.min(tmpImgt[:, :, 0])
            )
            tmpImg[:, :, 1] = (tmpImgt[:, :, 1] - np.min(tmpImgt[:, :, 1])) / (
                np.max(tmpImgt[:, :, 1]) - np.min(tmpImgt[:, :, 1])
            )
            tmpImg[:, :, 2] = (tmpImgt[:, :, 2] - np.min(tmpImgt[:, :, 2])) / (
                np.max(tmpImgt[:, :, 2]) - np.min(tmpImgt[:, :, 2])
            )
            tmpImg[:, :, 3] = (tmpImgtl[:, :, 0] - np.min(tmpImgtl[:, :, 0])) / (
                np.max(tmpImgtl[:, :, 0]) - np.min(tmpImgtl[:, :, 0])
            )
            tmpImg[:, :, 4] = (tmpImgtl[:, :, 1] - np.min(tmpImgtl[:, :, 1])) / (
                np.max(tmpImgtl[:, :, 1]) - np.min(tmpImgtl[:, :, 1])
            )
            tmpImg[:, :, 5] = (tmpImgtl[:, :, 2] - np.min(tmpImgtl[:, :, 2])) / (
                np.max(tmpImgtl[:, :, 2]) - np.min(tmpImgtl[:, :, 2])
            )

            # tmpImg = tmpImg/(np.max(tmpImg)-np.min(tmpImg))

            tmpImg[:, :, 0] = (tmpImg[:, :, 0] - np.mean(tmpImg[:, :, 0])) / np.std(
                tmpImg[:, :, 0]
            )
            tmpImg[:, :, 1] = (tmpImg[:, :, 1] - np.mean(tmpImg[:, :, 1])) / np.std(
                tmpImg[:, :, 1]
            )
            tmpImg[:, :, 2] = (tmpImg[:, :, 2] - np.mean(tmpImg[:, :, 2])) / np.std(
                tmpImg[:, :, 2]
            )
            tmpImg[:, :, 3] = (tmpImg[:, :, 3] - np.mean(tmpImg[:, :, 3])) / np.std(
                tmpImg[:, :, 3]
            )
            tmpImg[:, :, 4] = (tmpImg[:, :, 4] - np.mean(tmpImg[:, :, 4])) / np.std(
                tmpImg[:, :, 4]
            )
            tmpImg[:, :, 5] = (tmpImg[:, :, 5] - np.mean(tmpImg[:, :, 5])) / np.std(
                tmpImg[:, :, 5]
            )

        elif self.flag == 1:  # with Lab color
            tmpImg = np.zeros((image.shape[0], image.shape[1], 3))

            if image.shape[2] == 1:
                tmpImg[:, :, 0] = image[:, :, 0]
                tmpImg[:, :, 1] = image[:, :, 0]
                tmpImg[:, :, 2] = image[:, :, 0]
            else:
                tmpImg = image

            # tmpImg = color.rgb2lab(tmpImg)
            print("tmpImg:", tmpImg.min(), tmpImg.max())
            exit()
            tmpImg = cv2.cvtColor(tmpImg, cv2.COLOR_RGB2LAB)

            # tmpImg = tmpImg/(np.max(tmpImg)-np.min(tmpImg))

            tmpImg[:, :, 0] = (tmpImg[:, :, 0] - np.min(tmpImg[:, :, 0])) / (
                np.max(tmpImg[:, :, 0]) - np.min(tmpImg[:, :, 0])
            )
            tmpImg[:, :, 1] = (tmpImg[:, :, 1] - np.min(tmpImg[:, :, 1])) / (
                np.max(tmpImg[:, :, 1]) - np.min(tmpImg[:, :, 1])
            )
            tmpImg[:, :, 2] = (tmpImg[:, :, 2] - np.min(tmpImg[:, :, 2])) / (
                np.max(tmpImg[:, :, 2]) - np.min(tmpImg[:, :, 2])
            )

            tmpImg[:, :, 0] = (tmpImg[:, :, 0] - np.mean(tmpImg[:, :, 0])) / np.std(
                tmpImg[:, :, 0]
            )
            tmpImg[:, :, 1] = (tmpImg[:, :, 1] - np.mean(tmpImg[:, :, 1])) / np.std(
                tmpImg[:, :, 1]
            )
            tmpImg[:, :, 2] = (tmpImg[:, :, 2] - np.mean(tmpImg[:, :, 2])) / np.std(
                tmpImg[:, :, 2]
            )

        else:  # with rgb color
            tmpImg = np.zeros((image.shape[0], image.shape[1], 3))
            image = image / np.max(image)
            if image.shape[2] == 1:
                tmpImg[:, :, 0] = (image[:, :, 0] - 0.485) / 0.229
                tmpImg[:, :, 1] = (image[:, :, 0] - 0.485) / 0.229
                tmpImg[:, :, 2] = (image[:, :, 0] - 0.485) / 0.229
            else:
                tmpImg[:, :, 0] = (image[:, :, 0] - 0.485) / 0.229
                tmpImg[:, :, 1] = (image[:, :, 1] - 0.456) / 0.224
                tmpImg[:, :, 2] = (image[:, :, 2] - 0.406) / 0.225

        tmpLbl[:, :, 0] = label[:, :, 0]

        # change the r,g,b to b,r,g from [0,255] to [0,1]
        # transforms.Normalize(mean = (0.485, 0.456, 0.406), std = (0.229, 0.224, 0.225))
        tmpImg = tmpImg.transpose((2, 0, 1))
        tmpLbl = label.transpose((2, 0, 1))

        return {"image": torch.from_numpy(tmpImg), "label": torch.from_numpy(tmpLbl)}


def apply_transform(
    data: Dict[str, np.ndarray], rescale_size: int, to_tensor_lab_flag: int
) -> Dict[str, torch.Tensor]:
    transform = transforms.Compose(
        [RescaleT(output_size=rescale_size), ToTensorLab(flag=to_tensor_lab_flag)]
    )
    return transform(data)  # type: ignore


class BASNetImageProcessor(BaseImageProcessor):
    model_input_names = ["pixel_values"]

    def __init__(
        self, rescale_size: int = 256, to_tensor_lab_flag: int = 0, **kwargs
    ) -> None:
        super().__init__(**kwargs)
        self.rescale_size = rescale_size
        self.to_tensor_lab_flag = to_tensor_lab_flag

    def preprocess(self, images: ImageInput, **kwargs) -> BatchFeature:
        if not isinstance(images, PilImage):
            raise ValueError(f"Expected PIL.Image, got {type(images)}")

        image_pil = images
        image_npy = np.array(image_pil, dtype=np.uint8)
        width, height = image_pil.size
        label_npy = np.zeros((height, width), dtype=np.uint8)

        assert image_npy.shape[-1] == 3
        output = apply_transform(
            {"image": image_npy, "label": label_npy},
            rescale_size=self.rescale_size,
            to_tensor_lab_flag=self.to_tensor_lab_flag,
        )
        image = output["image"]

        assert isinstance(image, torch.Tensor)

        return BatchFeature(
            data={"pixel_values": image.float().unsqueeze(dim=0)}, tensor_type="pt"
        )

    def postprocess(
        self, prediction: torch.Tensor, width: int, height: int
    ) -> PilImage:
        def _norm_prediction(d: torch.Tensor) -> torch.Tensor:
            ma, mi = torch.max(d), torch.min(d)

            # division while avoiding zero division
            dn = (d - mi) / ((ma - mi) + torch.finfo(torch.float32).eps)
            return dn

        prediction = _norm_prediction(prediction)
        prediction = prediction.squeeze()
        prediction = prediction * 255 + 0.5
        prediction = prediction.clamp(0, 255)

        prediction_np = prediction.cpu().numpy()
        image = Image.fromarray(prediction_np).convert("RGB")
        image = image.resize((width, height), resample=Image.Resampling.BILINEAR)
        return image