whispervq / custom_component.py
jan-hq's picture
Upload folder using huggingface_hub
68fc348 verified
raw
history blame
6.51 kB
import torch
import torch.nn as nn
import whisper
from whisper.model import AudioEncoder, ModelDimensions
from typing import Dict, Optional
from whisperspeech.vq_stoks import RQBottleneckTransformer, Tunables
from huggingface_hub import hf_hub_download
import torch.nn.functional as F
import os
from typing import List, Optional, Union
import io
import urllib
from tqdm import tqdm
import torchaudio
_HF_MODELS = {
"medium": "https://huggingface.co/jan-hq/WhisperVQ/resolve/main/medium_encoder_only.pt",
}
def available_models() -> List[str]:
"""Returns the names of available models"""
return list(_HF_MODELS.keys())
def _download(url: str, root: str, in_memory: bool) -> Union[bytes, str]:
os.makedirs(root, exist_ok=True)
expected_sha256 = url.split("/")[-2]
download_target = os.path.join(root, os.path.basename(url))
if os.path.exists(download_target) and not os.path.isfile(download_target):
raise RuntimeError(f"{download_target} exists and is not a regular file")
if os.path.isfile(download_target):
with open(download_target, "rb") as f:
model_bytes = f.read()
return model_bytes if in_memory else download_target
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
with tqdm(
total=int(source.info().get("Content-Length")),
ncols=80,
unit="iB",
unit_scale=True,
unit_divisor=1024,
) as loop:
while True:
buffer = source.read(8192)
if not buffer:
break
output.write(buffer)
loop.update(len(buffer))
model_bytes = open(download_target, "rb").read()
return model_bytes if in_memory else download_target
class CustomWhisperEncoder(nn.Module):
"""
Lightweight wrapper that only loads the AudioEncoder part of Whisper
"""
def __init__(self, name: str, device: str = None, download_root: str = None, in_memory: bool = False,):
super().__init__()
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
if download_root is None:
default = os.path.join(os.path.expanduser("~"), ".cache")
download_root = os.path.dirname(os.path.realpath(__file__)) #os.path.join(os.getenv("XDG_CACHE_HOME", default), "whisper")
if name in _HF_MODELS:
checkpoint_file = _download(_HF_MODELS[name], download_root, in_memory)
elif os.path.isfile(name):
checkpoint_file = open(name, "rb").read() if in_memory else name
else:
raise RuntimeError(
f"Model {name} not found; available models = {available_models()}"
)
# Load weights
with (
io.BytesIO(checkpoint_file) if in_memory else open(checkpoint_file, "rb")
) as fp:
checkpoint = torch.load(fp, map_location=device)
del checkpoint_file
dims = ModelDimensions(**checkpoint["dims"])
self.encoder = AudioEncoder(
dims.n_mels,
dims.n_audio_ctx,
dims.n_audio_state,
dims.n_audio_head,
dims.n_audio_layer,
)
self.encoder.load_state_dict(checkpoint["model_state_dict"])
if device:
self.to(device)
self.eval()
def forward(self, mel: torch.Tensor):
return self.encoder(mel)
class CustomRQBottleneckTransformer(RQBottleneckTransformer):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
@classmethod
def load_vq_only(cls, ref="collabora/spear-tts-pytorch:whisper-vq-stoks-medium-en+pl.model",
repo_id=None, filename=None, local_filename=None):
if repo_id is None and filename is None and local_filename is None:
if ":" in ref:
repo_id, filename = ref.split(":", 1)
else:
local_filename = ref
if not local_filename:
local_filename = hf_hub_download(repo_id=repo_id, filename=filename)
# Load the spec
spec = torch.load(local_filename)
# Create instance with minimal required components
instance = cls(**spec['config'], tunables=Tunables(**Tunables.upgrade(spec.get('tunables', {}))))
# Load only necessary state dict entries
required_components = {
'rq', 'mlp', 'mlp_ln'
}
filtered_state_dict = {
k: v for k, v in spec['state_dict'].items()
if any(k.startswith(comp) for comp in required_components)
}
instance.load_state_dict(filtered_state_dict, strict=False)
instance.eval()
return instance
def load_encoder(self, device=None):
if self.whmodel is not None: return
device = device or self.device
# Use our custom encoder-only model
if self.whmodel is None:
encoder = CustomWhisperEncoder(self.whisper_model_name, device=device)
self.whmodel = [encoder]
multilingual = not self.whisper_model_name.endswith('.en')
self.tokenizer = whisper.tokenizer.get_tokenizer(multilingual)
def optimzed_encode_mel(self, mel):
assert len(mel.shape) == 3, "invalid mel spectrogram shape, expect (batch,chn,time)"
self.load_encoder()
n = mel.shape[-1]
if n > whisper.audio.N_FRAMES:
padding = 0
padded = mel[:,:,:whisper.audio.N_FRAMES]
else:
padding = -n % whisper.audio.N_FRAMES
padded = F.pad(mel, (0, padding), value=-1.5)
embs = self.whmodel[0].encoder(padded)#.to(self.whmodel[0].device))#[:,:n//2]
stoks = self.quantize(embs)
if self.tunables.mask_embs:
return stoks[:,:n//2//self.downsample]
else:
return stoks
# overide
def encode_audio(self, audio):
if isinstance(audio, str):
x, sr = torchaudio.load(audio)
x = torchaudio.transforms.Resample(sr, 16000)(x)[0]
audio = x.unsqueeze(0)
return self.optimzed_encode_mel(self.log_mel_spectrogram(audio).to(self.device))
if __name__ == "__main__":
# Load the model
vqmodel = CustomRQBottleneckTransformer.load_vq_only(
"whisper-vq-stoks-v3-7lang-fixed.model"
).to("cuda")
vqmodel.load_encoder('cuda')
vqmodel.eval()