todd-cook
commited on
Commit
·
971409a
1
Parent(s):
b3fa48a
updated for paper publication
Browse files- README.md +12 -8
- config.json +3 -3
- pytorch_model.bin +2 -2
- tf_model.h5 +2 -2
- vocab.txt +0 -0
README.md
CHANGED
@@ -8,13 +8,15 @@ datasets:
|
|
8 |
- Tesserae
|
9 |
- Phi5
|
10 |
- Thomas Aquinas
|
|
|
11 |
---
|
12 |
|
13 |
# Cicero-Similis
|
14 |
|
15 |
## Model description
|
16 |
|
17 |
-
A Latin Language Model, trained on
|
|
|
18 |
|
19 |
## Intended uses & limitations
|
20 |
|
@@ -26,7 +28,7 @@ Normalize text using JV Replacement and tokenize using CLTK to separate enclitic
|
|
26 |
from transformers import BertForMaskedLM, AutoTokenizer, FillMaskPipeline
|
27 |
tokenizer = AutoTokenizer.from_pretrained("cook/cicero-similis")
|
28 |
model = BertForMaskedLM.from_pretrained("cook/cicero-similis")
|
29 |
-
fill_mask = FillMaskPipeline(model=model, tokenizer=tokenizer)
|
30 |
# Cicero, De Re Publica, VI, 32, 2
|
31 |
# "animal" is found in A, Q, PhD manuscripts
|
32 |
# 'anima' H^1 Macr. et codd. Tusc.
|
@@ -35,21 +37,23 @@ results = fill_mask("inanimum est enim omne quod pulsu agitatur externo; quod au
|
|
35 |
|
36 |
#### Limitations and bias
|
37 |
|
38 |
-
|
39 |
|
40 |
## Training data
|
41 |
|
42 |
-
Trained on the corpora Phi5, Tesserae,
|
43 |
|
44 |
|
45 |
## Training procedure
|
46 |
|
47 |
-
5 epochs, masked language modeling .
|
48 |
|
49 |
|
50 |
## Eval results
|
51 |
-
A novel evaluation metric is proposed in the
|
|
|
52 |
|
53 |
### BibTeX entry and citation info
|
54 |
-
|
55 |
-
|
|
|
|
8 |
- Tesserae
|
9 |
- Phi5
|
10 |
- Thomas Aquinas
|
11 |
+
- Patrologia Latina
|
12 |
---
|
13 |
|
14 |
# Cicero-Similis
|
15 |
|
16 |
## Model description
|
17 |
|
18 |
+
A Latin Language Model, trained on Latin texts, and evaluated using the corpus of Cicero, as described in the paper _What Would Cicero Write? -- Examining Critical Textual Decisions with a Language Model_ by Todd Cook,
|
19 |
+
Published in Ciceroniana On Line, Vol. V, #2.
|
20 |
|
21 |
## Intended uses & limitations
|
22 |
|
|
|
28 |
from transformers import BertForMaskedLM, AutoTokenizer, FillMaskPipeline
|
29 |
tokenizer = AutoTokenizer.from_pretrained("cook/cicero-similis")
|
30 |
model = BertForMaskedLM.from_pretrained("cook/cicero-similis")
|
31 |
+
fill_mask = FillMaskPipeline(model=model, tokenizer=tokenizer, top_k=10_000)
|
32 |
# Cicero, De Re Publica, VI, 32, 2
|
33 |
# "animal" is found in A, Q, PhD manuscripts
|
34 |
# 'anima' H^1 Macr. et codd. Tusc.
|
|
|
37 |
|
38 |
#### Limitations and bias
|
39 |
|
40 |
+
Currently the model training data excludes modern and 19th century texts, but that weakness is the model's strength; it's not aimed to be a one-size-fits-all model.
|
41 |
|
42 |
## Training data
|
43 |
|
44 |
+
Trained on the corpora Phi5, Tesserae, Thomas Aquinas, and Patrologes Latina.
|
45 |
|
46 |
|
47 |
## Training procedure
|
48 |
|
49 |
+
5 epochs, masked language modeling .15, effective batch size 32
|
50 |
|
51 |
|
52 |
## Eval results
|
53 |
+
A novel evaluation metric is proposed in the paper _What Would Cicero Write? -- Examining Critical Textual Decisions with a Language Model_ by Todd Cook,
|
54 |
+
Published in Ciceroniana On Line, Vol. V, #2.
|
55 |
|
56 |
### BibTeX entry and citation info
|
57 |
+
TODO
|
58 |
+
_What Would Cicero Write? -- Examining Critical Textual Decisions with a Language Model_ by Todd Cook,
|
59 |
+
Published in Ciceroniana On Line, Vol. V, #2.
|
config.json
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "/
|
3 |
"architectures": [
|
4 |
"BertForMaskedLM"
|
5 |
],
|
6 |
"attention_probs_dropout_prob": 0.2,
|
7 |
-
"
|
8 |
"hidden_act": "gelu",
|
9 |
"hidden_dropout_prob": 0.2,
|
10 |
"hidden_size": 768,
|
@@ -17,7 +17,7 @@
|
|
17 |
"num_hidden_layers": 6,
|
18 |
"pad_token_id": 0,
|
19 |
"position_embedding_type": "absolute",
|
20 |
-
"transformers_version": "4.
|
21 |
"type_vocab_size": 1,
|
22 |
"use_cache": true,
|
23 |
"vocab_size": 25000
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "models/final",
|
3 |
"architectures": [
|
4 |
"BertForMaskedLM"
|
5 |
],
|
6 |
"attention_probs_dropout_prob": 0.2,
|
7 |
+
"classifier_dropout": null,
|
8 |
"hidden_act": "gelu",
|
9 |
"hidden_dropout_prob": 0.2,
|
10 |
"hidden_size": 768,
|
|
|
17 |
"num_hidden_layers": 6,
|
18 |
"pad_token_id": 0,
|
19 |
"position_embedding_type": "absolute",
|
20 |
+
"transformers_version": "4.15.0",
|
21 |
"type_vocab_size": 1,
|
22 |
"use_cache": true,
|
23 |
"vocab_size": 25000
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:15a9661486ed016a2ad717e37b7949d5617dca271e491359bc3ad260bb13f542
|
3 |
+
size 253348914
|
tf_model.h5
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:469f4cb1f094d290ffa8a66f77eabec58f22c57cd56fc536ee0a6a30a6b2aae0
|
3 |
+
size 329499728
|
vocab.txt
CHANGED
The diff for this file is too large to render.
See raw diff
|
|