Upload KorBertTokenizer.py
Browse files- KorBertTokenizer.py +89 -0
KorBertTokenizer.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import BertTokenizer, WordpieceTokenizer
|
2 |
+
from unicodedata import normalize
|
3 |
+
|
4 |
+
def whitespace_tokenize(text):
|
5 |
+
text = text.strip()
|
6 |
+
if not text:
|
7 |
+
return []
|
8 |
+
tokens = text.split()
|
9 |
+
return tokens
|
10 |
+
|
11 |
+
|
12 |
+
class KorWordpieceTokenizer(WordpieceTokenizer):
|
13 |
+
def tokenize(self, text):
|
14 |
+
output_tokens = []
|
15 |
+
for token in whitespace_tokenize(text):
|
16 |
+
chars = list(normalize('NFC',token))
|
17 |
+
if len(chars) > self.max_input_chars_per_word:
|
18 |
+
output_tokens.append(self.unk_token)
|
19 |
+
continue
|
20 |
+
|
21 |
+
is_bad = False
|
22 |
+
start = 0
|
23 |
+
sub_tokens = []
|
24 |
+
while start < len(chars):
|
25 |
+
end = len(chars)
|
26 |
+
cur_substr = None
|
27 |
+
while start < end:
|
28 |
+
substr = "".join(chars[start:end])
|
29 |
+
if substr in self.vocab:
|
30 |
+
cur_substr = substr
|
31 |
+
break
|
32 |
+
end -= 1
|
33 |
+
if cur_substr is None:
|
34 |
+
is_bad = True
|
35 |
+
break
|
36 |
+
sub_tokens.append(cur_substr)
|
37 |
+
start = end
|
38 |
+
|
39 |
+
if is_bad:
|
40 |
+
output_tokens.append(self.unk_token)
|
41 |
+
else:
|
42 |
+
output_tokens.extend(sub_tokens)
|
43 |
+
return output_tokens
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
class KorBertTokenizer(BertTokenizer):
|
48 |
+
|
49 |
+
def __init__(self,
|
50 |
+
vocab_file,
|
51 |
+
do_lower_case=True,
|
52 |
+
do_basic_tokenize=True,
|
53 |
+
never_split=None,
|
54 |
+
unk_token="[UNK]",
|
55 |
+
sep_token="[SEP]",
|
56 |
+
pad_token="[PAD]",
|
57 |
+
cls_token="[CLS]",
|
58 |
+
mask_token="[MASK]",
|
59 |
+
tokenize_chinese_chars=True,
|
60 |
+
strip_accents=None,
|
61 |
+
**kwargs):
|
62 |
+
super().__init__(vocab_file,
|
63 |
+
do_lower_case=True,
|
64 |
+
do_basic_tokenize=True,
|
65 |
+
never_split=None,
|
66 |
+
unk_token="[UNK]",
|
67 |
+
sep_token="[SEP]",
|
68 |
+
pad_token="[PAD]",
|
69 |
+
cls_token="[CLS]",
|
70 |
+
mask_token="[MASK]",
|
71 |
+
tokenize_chinese_chars=True,
|
72 |
+
strip_accents=None,
|
73 |
+
**kwargs)
|
74 |
+
self.wordpiece_tokenizer = KorWordpieceTokenizer(vocab=self.vocab, unk_token=self.unk_token)
|
75 |
+
|
76 |
+
def _tokenize(self, text):
|
77 |
+
split_tokens = []
|
78 |
+
if self.do_basic_tokenize:
|
79 |
+
for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
|
80 |
+
|
81 |
+
token += '_'
|
82 |
+
# If the token is part of the never_split set
|
83 |
+
if token in self.basic_tokenizer.never_split:
|
84 |
+
split_tokens.append(token)
|
85 |
+
else:
|
86 |
+
split_tokens += self.wordpiece_tokenizer.tokenize(token)
|
87 |
+
else:
|
88 |
+
split_tokens = self.wordpiece_tokenizer.tokenize(text)
|
89 |
+
return split_tokens
|