yangwang825 commited on
Commit
69859f1
·
verified ·
1 Parent(s): 7f25d42

Upload config

Browse files
Files changed (3) hide show
  1. README.md +199 -0
  2. config.json +163 -0
  3. configuration_whisper_spkreg.py +275 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "openai/whisper-base",
3
+ "activation_dropout": 0.0,
4
+ "activation_function": "gelu",
5
+ "apply_spec_augment": false,
6
+ "architectures": [
7
+ "WhisperForConditionalGeneration"
8
+ ],
9
+ "attention_dropout": 0.0,
10
+ "auto_map": {
11
+ "AutoConfig": "configuration_whisper_spkreg.WhisperSpkRegConfig"
12
+ },
13
+ "begin_suppress_tokens": [
14
+ 220,
15
+ 50257
16
+ ],
17
+ "bos_token_id": 50257,
18
+ "classifier_proj_size": 256,
19
+ "d_model": 512,
20
+ "decoder_attention_heads": 8,
21
+ "decoder_ffn_dim": 2048,
22
+ "decoder_layerdrop": 0.0,
23
+ "decoder_layers": 6,
24
+ "decoder_start_token_id": 50258,
25
+ "dropout": 0.0,
26
+ "easy_margin": false,
27
+ "encoder_attention_heads": 8,
28
+ "encoder_ffn_dim": 2048,
29
+ "encoder_layerdrop": 0.0,
30
+ "encoder_layers": 6,
31
+ "eos_token_id": 50257,
32
+ "forced_decoder_ids": [
33
+ [
34
+ 1,
35
+ 50259
36
+ ],
37
+ [
38
+ 2,
39
+ 50359
40
+ ],
41
+ [
42
+ 3,
43
+ 50363
44
+ ]
45
+ ],
46
+ "init_std": 0.02,
47
+ "is_encoder_decoder": true,
48
+ "label_smoothing": 0.0,
49
+ "loss_fct": "cross_entropy",
50
+ "margin": 0.35,
51
+ "mask_feature_length": 10,
52
+ "mask_feature_min_masks": 0,
53
+ "mask_feature_prob": 0.0,
54
+ "mask_time_length": 10,
55
+ "mask_time_min_masks": 2,
56
+ "mask_time_prob": 0.05,
57
+ "max_length": 448,
58
+ "max_source_positions": 1500,
59
+ "max_target_positions": 448,
60
+ "median_filter_width": 7,
61
+ "model_type": "whisper_spkreg",
62
+ "num_hidden_layers": 6,
63
+ "num_mel_bins": 80,
64
+ "pad_token_id": 50257,
65
+ "reduction": "mean",
66
+ "scale": 30.0,
67
+ "scale_embedding": false,
68
+ "suppress_tokens": [
69
+ 1,
70
+ 2,
71
+ 7,
72
+ 8,
73
+ 9,
74
+ 10,
75
+ 14,
76
+ 25,
77
+ 26,
78
+ 27,
79
+ 28,
80
+ 29,
81
+ 31,
82
+ 58,
83
+ 59,
84
+ 60,
85
+ 61,
86
+ 62,
87
+ 63,
88
+ 90,
89
+ 91,
90
+ 92,
91
+ 93,
92
+ 359,
93
+ 503,
94
+ 522,
95
+ 542,
96
+ 873,
97
+ 893,
98
+ 902,
99
+ 918,
100
+ 922,
101
+ 931,
102
+ 1350,
103
+ 1853,
104
+ 1982,
105
+ 2460,
106
+ 2627,
107
+ 3246,
108
+ 3253,
109
+ 3268,
110
+ 3536,
111
+ 3846,
112
+ 3961,
113
+ 4183,
114
+ 4667,
115
+ 6585,
116
+ 6647,
117
+ 7273,
118
+ 9061,
119
+ 9383,
120
+ 10428,
121
+ 10929,
122
+ 11938,
123
+ 12033,
124
+ 12331,
125
+ 12562,
126
+ 13793,
127
+ 14157,
128
+ 14635,
129
+ 15265,
130
+ 15618,
131
+ 16553,
132
+ 16604,
133
+ 18362,
134
+ 18956,
135
+ 20075,
136
+ 21675,
137
+ 22520,
138
+ 26130,
139
+ 26161,
140
+ 26435,
141
+ 28279,
142
+ 29464,
143
+ 31650,
144
+ 32302,
145
+ 32470,
146
+ 36865,
147
+ 42863,
148
+ 47425,
149
+ 49870,
150
+ 50254,
151
+ 50258,
152
+ 50358,
153
+ 50359,
154
+ 50360,
155
+ 50361,
156
+ 50362
157
+ ],
158
+ "torch_dtype": "float32",
159
+ "transformers_version": "4.46.2",
160
+ "use_cache": true,
161
+ "use_weighted_layer_sum": false,
162
+ "vocab_size": 51865
163
+ }
configuration_whisper_spkreg.py ADDED
@@ -0,0 +1,275 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Whisper model configuration"""
2
+
3
+ from transformers.configuration_utils import PretrainedConfig
4
+ from transformers.utils import logging
5
+
6
+ logger = logging.get_logger(__name__)
7
+
8
+
9
+ # fmt: off
10
+ NON_SPEECH_TOKENS = [
11
+ 1, 2, 7, 8, 9, 10, 14, 25,
12
+ 26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
13
+ 63, 90, 91, 92, 93, 357, 366, 438, 532, 685,
14
+ 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377,
15
+ 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211,
16
+ 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786,
17
+ 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791,
18
+ 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409,
19
+ 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361
20
+ ]
21
+ NON_SPEECH_TOKENS_MULTI = [
22
+ 1, 2, 7, 8, 9, 10, 14, 25,
23
+ 26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
24
+ 63, 90, 91, 92, 93, 359, 503, 522, 542, 873,
25
+ 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627,
26
+ 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647,
27
+ 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793,
28
+ 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675,
29
+ 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865,
30
+ 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362
31
+ ]
32
+ # fmt: on
33
+
34
+
35
+ class WhisperSpkRegConfig(PretrainedConfig):
36
+ r"""
37
+ This is the configuration class to store the configuration of a [`WhisperModel`]. It is used to instantiate a
38
+ Whisper model according to the specified arguments, defining the model architecture. Instantiating a configuration
39
+ with the defaults will yield a similar configuration to that of the Whisper
40
+ [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) architecture.
41
+
42
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
43
+ documentation from [`PretrainedConfig`] for more information.
44
+
45
+
46
+ Args:
47
+ vocab_size (`int`, *optional*, defaults to 51865):
48
+ Vocabulary size of the Whisper model. Defines the number of different tokens that can be represented by the
49
+ `decoder_input_ids` passed when calling [`WhisperModel`]
50
+ num_mel_bins (`int`, *optional*, defaults to 80):
51
+ Number of mel features used per input features. Should correspond to the value used in the
52
+ `WhisperProcessor` class.
53
+ encoder_layers (`int`, *optional*, defaults to 4):
54
+ Number of encoder layers.
55
+ decoder_layers (`int`, *optional*, defaults to 4):
56
+ Number of decoder layers.
57
+ encoder_attention_heads (`int`, *optional*, defaults to 6):
58
+ Number of attention heads for each attention layer in the Transformer encoder.
59
+ decoder_attention_heads (`int`, *optional*, defaults to 6):
60
+ Number of attention heads for each attention layer in the Transformer decoder.
61
+ encoder_ffn_dim (`int`, *optional*, defaults to 1536):
62
+ Dimensionality of the "intermediate" (often named feed-forward) layer in encoder.
63
+ decoder_ffn_dim (`int`, *optional*, defaults to 1536):
64
+ Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
65
+ encoder_layerdrop (`float`, *optional*, defaults to 0.0):
66
+ The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
67
+ for more details.
68
+ decoder_layerdrop (`float`, *optional*, defaults to 0.0):
69
+ The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
70
+ for more details.
71
+ decoder_start_token_id (`int`, *optional*, defaults to 50257):
72
+ Corresponds to the "<|startoftranscript|>" token, which is automatically used when no `decoder_input_ids`
73
+ are provided to the `generate` function. It is used to guide the model`s generation process depending on
74
+ the task.
75
+ use_cache (`bool`, *optional*, defaults to `True`):
76
+ Whether or not the model should return the last key/values attentions (not used by all models).
77
+ is_encoder_decoder (`bool`, *optional*, defaults to `True`):
78
+ Whether the model is used as an encoder/decoder or not.
79
+ activation_function (`str`, *optional*, defaults to `"gelu"`):
80
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
81
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
82
+ d_model (`int`, *optional*, defaults to 384):
83
+ Dimensionality of the layers.
84
+ dropout (`float`, *optional*, defaults to 0.1):
85
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
86
+ attention_dropout (`float`, *optional*, defaults to 0.0):
87
+ The dropout ratio for the attention probabilities.
88
+ activation_dropout (`float`, *optional*, defaults to 0.0):
89
+ The dropout ratio for activations inside the fully connected layer.
90
+ init_std (`float`, *optional*, defaults to 0.02):
91
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
92
+ scale_embedding (`bool`, *optional*, defaults to False):
93
+ Scale embeddings by diving by sqrt(d_model).
94
+ max_source_positions (`int`, *optional*, defaults to 1500):
95
+ The maximum sequence length of log-mel filter-bank features that this model might ever be used with.
96
+ max_target_positions (`int`, *optional*, defaults to 448):
97
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
98
+ just in case (e.g., 512 or 1024 or 2048).
99
+ pad_token_id (`int`, *optional*, defaults to 50256):
100
+ Padding token id.
101
+ bos_token_id (`int`, *optional*, defaults to 50256):
102
+ Begin of stream token id.
103
+ eos_token_id (`int`, *optional*, defaults to 50256):
104
+ End of stream token id.
105
+ suppress_tokens (`List[int]`, *optional*):
106
+ A list containing the non-speech tokens that will be used by the logit processor in the `generate`
107
+ function. NON_SPEECH_TOKENS and NON_SPEECH_TOKENS_MULTI each correspond to the `english-only` and the
108
+ `multilingual` model.
109
+ begin_suppress_tokens (`List[int]`, *optional*, defaults to `[220,50256]`):
110
+ A list containing tokens that will be supressed at the beginning of the sampling process. Initialized as
111
+ the token for `" "` (`blank_token_id`) and the `eos_token_id`
112
+ use_weighted_layer_sum (`bool`, *optional*, defaults to `False`):
113
+ Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an
114
+ instance of [`WhisperForAudioClassification`].
115
+ classifier_proj_size (`int`, *optional*, defaults to 256):
116
+ Dimensionality of the projection before token mean-pooling for classification. Only relevant when using an
117
+ instance of [`WhisperForAudioClassification`].
118
+ apply_spec_augment (`bool`, *optional*, defaults to `False`):
119
+ Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see
120
+ [SpecAugment: A Simple Data Augmentation Method for Automatic Speech
121
+ Recognition](https://arxiv.org/abs/1904.08779).
122
+ mask_time_prob (`float`, *optional*, defaults to 0.05):
123
+ Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking
124
+ procecure generates `mask_time_prob*len(time_axis)/mask_time_length` independent masks over the axis. If
125
+ reasoning from the propability of each feature vector to be chosen as the start of the vector span to be
126
+ masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the
127
+ actual percentage of masked vectors. This is only relevant if `apply_spec_augment == True`.
128
+ mask_time_length (`int`, *optional*, defaults to 10):
129
+ Length of vector span along the time axis.
130
+ mask_time_min_masks (`int`, *optional*, defaults to 2),:
131
+ The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step,
132
+ irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length <
133
+ mask_time_min_masks''
134
+ mask_feature_prob (`float`, *optional*, defaults to 0.0):
135
+ Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The
136
+ masking procecure generates `mask_feature_prob*len(feature_axis)/mask_time_length` independent masks over
137
+ the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector
138
+ span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap
139
+ may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is
140
+ True`.
141
+ mask_feature_length (`int`, *optional*, defaults to 10):
142
+ Length of vector span along the feature axis.
143
+ mask_feature_min_masks (`int`, *optional*, defaults to 0),:
144
+ The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time
145
+ step, irrespectively of `mask_feature_prob`. Only relevant if
146
+ `mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks`.
147
+ median_filter_width (`int`, *optional*, defaults to 7):
148
+ Width of the median filter used to smoothen to cross-attention outputs when computing token timestamps.
149
+ Should be an odd number.
150
+
151
+ Example:
152
+
153
+ ```python
154
+ >>> from transformers import WhisperConfig, WhisperModel
155
+
156
+ >>> # Initializing a Whisper tiny style configuration
157
+ >>> configuration = WhisperConfig()
158
+
159
+ >>> # Initializing a model (with random weights) from the tiny style configuration
160
+ >>> model = WhisperModel(configuration)
161
+
162
+ >>> # Accessing the model configuration
163
+ >>> configuration = model.config
164
+ ```"""
165
+
166
+ model_type = "whisper_spkreg"
167
+ keys_to_ignore_at_inference = ["past_key_values"]
168
+ attribute_map = {
169
+ "num_key_value_heads": "encoder_attention_heads",
170
+ "num_attention_heads": "encoder_attention_heads",
171
+ "hidden_size": "d_model",
172
+ }
173
+
174
+ def __init__(
175
+ self,
176
+ vocab_size=51865,
177
+ num_mel_bins=80,
178
+ encoder_layers=4,
179
+ encoder_attention_heads=6,
180
+ decoder_layers=4,
181
+ decoder_attention_heads=6,
182
+ decoder_ffn_dim=1536,
183
+ encoder_ffn_dim=1536,
184
+ encoder_layerdrop=0.0,
185
+ decoder_layerdrop=0.0,
186
+ decoder_start_token_id=50257,
187
+ use_cache=True,
188
+ is_encoder_decoder=True,
189
+ activation_function="gelu",
190
+ d_model=384,
191
+ dropout=0.0,
192
+ attention_dropout=0.0,
193
+ activation_dropout=0.0,
194
+ init_std=0.02,
195
+ scale_embedding=False,
196
+ max_source_positions=1500,
197
+ max_target_positions=448,
198
+ pad_token_id=50256,
199
+ bos_token_id=50256,
200
+ eos_token_id=50256,
201
+ suppress_tokens=None,
202
+ begin_suppress_tokens=[220, 50256],
203
+ use_weighted_layer_sum=False,
204
+ classifier_proj_size=256,
205
+ apply_spec_augment=False,
206
+ mask_time_prob=0.05,
207
+ mask_time_length=10,
208
+ mask_time_min_masks=2,
209
+ mask_feature_prob=0.0,
210
+ mask_feature_length=10,
211
+ mask_feature_min_masks=0,
212
+ median_filter_width=7,
213
+ loss_fct: str = 'cross_entropy', # cross_entropy, additive_margin, additive_angular_margin
214
+ label_smoothing: float = 0.0,
215
+ scale: float = 30.0,
216
+ margin: float = 0.35,
217
+ easy_margin: bool = False,
218
+ reduction: str = "mean",
219
+ **kwargs,
220
+ ):
221
+ self.vocab_size = vocab_size
222
+ self.num_mel_bins = num_mel_bins
223
+ self.d_model = d_model
224
+ self.encoder_layers = encoder_layers
225
+ self.encoder_attention_heads = encoder_attention_heads
226
+ self.decoder_layers = decoder_layers
227
+ self.decoder_attention_heads = decoder_attention_heads
228
+ self.decoder_ffn_dim = decoder_ffn_dim
229
+ self.encoder_ffn_dim = encoder_ffn_dim
230
+ self.dropout = dropout
231
+ self.attention_dropout = attention_dropout
232
+ self.activation_dropout = activation_dropout
233
+ self.activation_function = activation_function
234
+ self.init_std = init_std
235
+ self.encoder_layerdrop = encoder_layerdrop
236
+ self.decoder_layerdrop = decoder_layerdrop
237
+ self.use_cache = use_cache
238
+ self.num_hidden_layers = encoder_layers
239
+ self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
240
+ self.max_source_positions = max_source_positions
241
+ self.max_target_positions = max_target_positions
242
+
243
+ # Audio Classification-specific parameters. Feel free to ignore for other classes.
244
+ self.classifier_proj_size = classifier_proj_size
245
+ self.use_weighted_layer_sum = use_weighted_layer_sum
246
+
247
+ # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
248
+ self.apply_spec_augment = apply_spec_augment
249
+ self.mask_time_prob = mask_time_prob
250
+ self.mask_time_length = mask_time_length
251
+ self.mask_time_min_masks = mask_time_min_masks
252
+ self.mask_feature_prob = mask_feature_prob
253
+ self.mask_feature_length = mask_feature_length
254
+ self.mask_feature_min_masks = mask_feature_min_masks
255
+
256
+ self.median_filter_width = median_filter_width
257
+
258
+ # Loss function parameters. Feel free to ignore for other classes.
259
+ self.loss_fct = loss_fct
260
+ self.label_smoothing = label_smoothing
261
+ self.scale = scale
262
+ self.margin = margin
263
+ self.easy_margin = easy_margin
264
+ self.reduction = reduction
265
+
266
+ super().__init__(
267
+ pad_token_id=pad_token_id,
268
+ bos_token_id=bos_token_id,
269
+ eos_token_id=eos_token_id,
270
+ is_encoder_decoder=is_encoder_decoder,
271
+ decoder_start_token_id=decoder_start_token_id,
272
+ suppress_tokens=suppress_tokens,
273
+ begin_suppress_tokens=begin_suppress_tokens,
274
+ **kwargs,
275
+ )