|
""" |
|
Feature extractor class for Whisper |
|
""" |
|
|
|
from typing import List, Optional, Union |
|
|
|
import numpy as np |
|
|
|
from transformers import is_torch_available |
|
from transformers.audio_utils import mel_filter_bank, spectrogram, window_function |
|
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor |
|
from transformers.feature_extraction_utils import BatchFeature |
|
from transformers.utils import TensorType, logging |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class WhisperSpkRegFeatureExtractor(SequenceFeatureExtractor): |
|
r""" |
|
Constructs a Whisper feature extractor. |
|
|
|
This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains |
|
most of the main methods. Users should refer to this superclass for more information regarding those methods. |
|
|
|
This class extracts mel-filter bank features from raw speech using a custom numpy implementation of the `Short Time |
|
Fourier Transform` which should match pytorch's `torch.stft` equivalent. |
|
|
|
Args: |
|
feature_size (`int`, *optional*, defaults to 80): |
|
The feature dimension of the extracted features. |
|
sampling_rate (`int`, *optional*, defaults to 16000): |
|
The sampling rate at which the audio files should be digitalized expressed in hertz (Hz). |
|
hop_length (`int`, *optional*, defaults to 160): |
|
Length of the overlaping windows for the STFT used to obtain the Mel Frequency coefficients. |
|
chunk_length (`int`, *optional*, defaults to 30): |
|
The maximum number of chuncks of `sampling_rate` samples used to trim and pad longer or shorter audio |
|
sequences. |
|
n_fft (`int`, *optional*, defaults to 400): |
|
Size of the Fourier transform. |
|
padding_value (`float`, *optional*, defaults to 0.0): |
|
Padding value used to pad the audio. Should correspond to silences. |
|
""" |
|
|
|
model_input_names = ["input_features"] |
|
|
|
def __init__( |
|
self, |
|
feature_size=80, |
|
sampling_rate=16000, |
|
hop_length=160, |
|
chunk_length=30, |
|
n_fft=400, |
|
padding_value=0.0, |
|
return_attention_mask=False, |
|
**kwargs, |
|
): |
|
super().__init__( |
|
feature_size=feature_size, |
|
sampling_rate=sampling_rate, |
|
padding_value=padding_value, |
|
return_attention_mask=return_attention_mask, |
|
**kwargs, |
|
) |
|
self.n_fft = n_fft |
|
self.hop_length = hop_length |
|
self.chunk_length = chunk_length |
|
self.n_samples = chunk_length * sampling_rate |
|
self.nb_max_frames = self.n_samples // hop_length |
|
self.sampling_rate = sampling_rate |
|
self.mel_filters = mel_filter_bank( |
|
num_frequency_bins=1 + n_fft // 2, |
|
num_mel_filters=feature_size, |
|
min_frequency=0.0, |
|
max_frequency=8000.0, |
|
sampling_rate=sampling_rate, |
|
norm="slaney", |
|
mel_scale="slaney", |
|
) |
|
|
|
def _np_extract_fbank_features(self, waveform_batch: np.array, device: str) -> np.ndarray: |
|
""" |
|
Compute the log-mel spectrogram of the provided audio, gives similar results to Whisper's original torch |
|
implementation with 1e-5 tolerance. |
|
""" |
|
if device != "cpu": |
|
raise ValueError( |
|
f"Got device `{device}` for feature extraction, but feature extraction on CUDA accelerator " |
|
"devices requires torch, which is not installed. Either set `device='cpu'`, or " |
|
"install torch according to the official instructions: https://pytorch.org/get-started/locally/" |
|
) |
|
log_spec_batch = [] |
|
for waveform in waveform_batch: |
|
log_spec = spectrogram( |
|
waveform, |
|
window_function(self.n_fft, "hann"), |
|
frame_length=self.n_fft, |
|
hop_length=self.hop_length, |
|
power=2.0, |
|
mel_filters=self.mel_filters, |
|
log_mel="log10", |
|
) |
|
log_spec = log_spec[:, :-1] |
|
log_spec = np.maximum(log_spec, log_spec.max() - 8.0) |
|
log_spec = (log_spec + 4.0) / 4.0 |
|
log_spec_batch.append(log_spec) |
|
log_spec_batch = np.array(log_spec_batch) |
|
return log_spec_batch |
|
|
|
def _torch_extract_fbank_features(self, waveform: np.array, device: str = "cpu") -> np.ndarray: |
|
""" |
|
Compute the log-mel spectrogram of the audio using PyTorch's GPU-accelerated STFT implementation with batching, |
|
yielding results similar to cpu computing with 1e-5 tolerance. |
|
""" |
|
waveform = torch.from_numpy(waveform).type(torch.float32) |
|
|
|
window = torch.hann_window(self.n_fft) |
|
if device != "cpu": |
|
waveform = waveform.to(device) |
|
window = window.to(device) |
|
stft = torch.stft(waveform, self.n_fft, self.hop_length, window=window, return_complex=True) |
|
magnitudes = stft[..., :-1].abs() ** 2 |
|
|
|
mel_filters = torch.from_numpy(self.mel_filters).type(torch.float32) |
|
if device != "cpu": |
|
mel_filters = mel_filters.to(device) |
|
mel_spec = mel_filters.T @ magnitudes |
|
|
|
log_spec = torch.clamp(mel_spec, min=1e-10).log10() |
|
if waveform.dim() == 2: |
|
max_val = log_spec.max(dim=2, keepdim=True)[0].max(dim=1, keepdim=True)[0] |
|
log_spec = torch.maximum(log_spec, max_val - 8.0) |
|
else: |
|
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0) |
|
log_spec = (log_spec + 4.0) / 4.0 |
|
if device != "cpu": |
|
log_spec = log_spec.detach().cpu() |
|
return log_spec.numpy() |
|
|
|
@staticmethod |
|
|
|
def zero_mean_unit_var_norm( |
|
input_values: List[np.ndarray], attention_mask: List[np.ndarray], padding_value: float = 0.0 |
|
) -> List[np.ndarray]: |
|
""" |
|
Every array in the list is normalized to have zero mean and unit variance |
|
""" |
|
if attention_mask is not None: |
|
attention_mask = np.array(attention_mask, np.int32) |
|
normed_input_values = [] |
|
|
|
for vector, length in zip(input_values, attention_mask.sum(-1)): |
|
normed_slice = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7) |
|
if length < normed_slice.shape[0]: |
|
normed_slice[length:] = padding_value |
|
|
|
normed_input_values.append(normed_slice) |
|
else: |
|
normed_input_values = [(x - x.mean()) / np.sqrt(x.var() + 1e-7) for x in input_values] |
|
|
|
return normed_input_values |
|
|
|
def __call__( |
|
self, |
|
raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], |
|
truncation: bool = True, |
|
pad_to_multiple_of: Optional[int] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
return_attention_mask: Optional[bool] = None, |
|
padding: Optional[str] = "max_length", |
|
max_length: Optional[int] = None, |
|
sampling_rate: Optional[int] = None, |
|
do_normalize: Optional[bool] = None, |
|
device: Optional[str] = "cpu", |
|
return_token_timestamps: Optional[bool] = None, |
|
**kwargs, |
|
) -> BatchFeature: |
|
""" |
|
Main method to featurize and prepare for the model one or several sequence(s). Implementation uses PyTorch for |
|
the STFT computation if available, otherwise a slower NumPy based one. |
|
|
|
Args: |
|
raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`): |
|
The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float |
|
values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not |
|
stereo, i.e. single float per timestep. |
|
truncation (`bool`, *optional*, default to `True`): |
|
Activates truncation to cut input sequences longer than *max_length* to *max_length*. |
|
pad_to_multiple_of (`int`, *optional*, defaults to None): |
|
If set will pad the sequence to a multiple of the provided value. |
|
|
|
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability |
|
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. |
|
return_attention_mask (`bool`, *optional*): |
|
Whether to return the attention mask. If left to the default, will return the attention mask according |
|
to the specific feature_extractor's default. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
<Tip> |
|
|
|
For Whisper models, `attention_mask` should always be passed for batched inference, to avoid subtle |
|
bugs. |
|
|
|
</Tip> |
|
|
|
return_tensors (`str` or [`~utils.TensorType`], *optional*): |
|
If set, will return tensors instead of list of python integers. Acceptable values are: |
|
|
|
- `'tf'`: Return TensorFlow `tf.constant` objects. |
|
- `'pt'`: Return PyTorch `torch.Tensor` objects. |
|
- `'np'`: Return Numpy `np.ndarray` objects. |
|
sampling_rate (`int`, *optional*): |
|
The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass |
|
`sampling_rate` at the forward call to prevent silent errors and allow automatic speech recognition |
|
pipeline. |
|
padding_value (`float`, *optional*, defaults to 0.0): |
|
The value that is used to fill the padding values / vectors. |
|
do_normalize (`bool`, *optional*, defaults to `False`): |
|
Whether or not to zero-mean unit-variance normalize the input. Normalizing can help to significantly |
|
improve the performance of the model. |
|
device (`str`, *optional*, defaults to `'cpu'`): |
|
Specifies the device for computation of the log-mel spectrogram of audio signals in the |
|
`_torch_extract_fbank_features` method. (e.g., "cpu", "cuda") |
|
return_token_timestamps (`bool`, *optional*, defaults to `None`): |
|
Whether or not to return the number of frames of the input raw_speech. |
|
These num_frames can be used by the model to compute word level timestamps. |
|
""" |
|
|
|
if sampling_rate is not None: |
|
if sampling_rate != self.sampling_rate: |
|
raise ValueError( |
|
f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" |
|
f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" |
|
f" was sampled with {self.sampling_rate} and not {sampling_rate}." |
|
) |
|
else: |
|
logger.warning( |
|
"It is strongly recommended to pass the `sampling_rate` argument to this function. " |
|
"Failing to do so can result in silent errors that might be hard to debug." |
|
) |
|
|
|
is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1 |
|
if is_batched_numpy and len(raw_speech.shape) > 2: |
|
raise ValueError(f"Only mono-channel audio is supported for input to {self}") |
|
is_batched = is_batched_numpy or ( |
|
isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list))) |
|
) |
|
|
|
if is_batched: |
|
raw_speech = [np.asarray([speech], dtype=np.float32).T for speech in raw_speech] |
|
elif not is_batched and not isinstance(raw_speech, np.ndarray): |
|
raw_speech = np.asarray(raw_speech, dtype=np.float32) |
|
elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64): |
|
raw_speech = raw_speech.astype(np.float32) |
|
|
|
|
|
if not is_batched: |
|
raw_speech = [np.asarray([raw_speech]).T] |
|
|
|
batched_speech = BatchFeature({"input_features": raw_speech}) |
|
|
|
|
|
|
|
padded_inputs = self.pad( |
|
batched_speech, |
|
padding=padding, |
|
max_length=max_length if max_length else self.n_samples, |
|
truncation=truncation, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
return_attention_mask=return_attention_mask or do_normalize, |
|
) |
|
|
|
|
|
if do_normalize: |
|
padded_inputs["input_features"] = self.zero_mean_unit_var_norm( |
|
padded_inputs["input_features"], |
|
attention_mask=padded_inputs["attention_mask"], |
|
padding_value=self.padding_value, |
|
) |
|
padded_inputs["input_features"] = np.stack(padded_inputs["input_features"], axis=0) |
|
|
|
|
|
input_features = padded_inputs.get("input_features").transpose(2, 0, 1) |
|
|
|
extract_fbank_features = ( |
|
self._torch_extract_fbank_features if is_torch_available() else self._np_extract_fbank_features |
|
) |
|
input_features = extract_fbank_features(input_features[0], device) |
|
|
|
if isinstance(input_features[0], List): |
|
padded_inputs["input_features"] = [np.asarray(feature, dtype=np.float32) for feature in input_features] |
|
|
|
else: |
|
padded_inputs["input_features"] = input_features |
|
|
|
if return_attention_mask: |
|
|
|
padded_inputs["attention_mask"] = padded_inputs["attention_mask"][:, :: self.hop_length] |
|
|
|
if return_token_timestamps is not None: |
|
padded_inputs["num_frames"] = [len(raw_speech_i) // self.hop_length for raw_speech_i in raw_speech] |
|
|
|
if return_tensors is not None: |
|
padded_inputs = padded_inputs.convert_to_tensors(return_tensors) |
|
|
|
return padded_inputs |